Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=612−246,x2=612+246
Alternative Form
x1≈−0.614065,x2≈4.614065
Evaluate
2(x−4)×3x=17
Multiply
More Steps

Evaluate
2(x−4)×3x
Multiply the terms
6(x−4)x
Multiply the terms
6x(x−4)
6x(x−4)=17
Expand the expression
More Steps

Evaluate
6x(x−4)
Apply the distributive property
6x×x−6x×4
Multiply the terms
6x2−6x×4
Multiply the numbers
6x2−24x
6x2−24x=17
Move the expression to the left side
6x2−24x−17=0
Substitute a=6,b=−24 and c=−17 into the quadratic formula x=2a−b±b2−4ac
x=2×624±(−24)2−4×6(−17)
Simplify the expression
x=1224±(−24)2−4×6(−17)
Simplify the expression
More Steps

Evaluate
(−24)2−4×6(−17)
Multiply
More Steps

Multiply the terms
4×6(−17)
Rewrite the expression
−4×6×17
Multiply the terms
−408
(−24)2−(−408)
Rewrite the expression
242−(−408)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242+408
Evaluate the power
576+408
Add the numbers
984
x=1224±984
Simplify the radical expression
More Steps

Evaluate
984
Write the expression as a product where the root of one of the factors can be evaluated
4×246
Write the number in exponential form with the base of 2
22×246
The root of a product is equal to the product of the roots of each factor
22×246
Reduce the index of the radical and exponent with 2
2246
x=1224±2246
Separate the equation into 2 possible cases
x=1224+2246x=1224−2246
Simplify the expression
More Steps

Evaluate
x=1224+2246
Divide the terms
More Steps

Evaluate
1224+2246
Rewrite the expression
122(12+246)
Cancel out the common factor 2
612+246
x=612+246
x=612+246x=1224−2246
Simplify the expression
More Steps

Evaluate
x=1224−2246
Divide the terms
More Steps

Evaluate
1224−2246
Rewrite the expression
122(12−246)
Cancel out the common factor 2
612−246
x=612−246
x=612+246x=612−246
Solution
x1=612−246,x2=612+246
Alternative Form
x1≈−0.614065,x2≈4.614065
Show Solution
