Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=315−15,x2=315+15
Alternative Form
x1≈3.709006,x2≈6.290994
Evaluate
2(x−5)×3(x−5)=10
Multiply the terms
More Steps

Evaluate
2(x−5)×3(x−5)
Multiply the terms
6(x−5)(x−5)
Multiply the terms
6(x−5)2
6(x−5)2=10
Expand the expression
More Steps

Evaluate
6(x−5)2
Expand the expression
More Steps

Evaluate
(x−5)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×5+52
Calculate
x2−10x+25
6(x2−10x+25)
Apply the distributive property
6x2−6×10x+6×25
Multiply the numbers
6x2−60x+6×25
Multiply the numbers
6x2−60x+150
6x2−60x+150=10
Move the expression to the left side
6x2−60x+140=0
Substitute a=6,b=−60 and c=140 into the quadratic formula x=2a−b±b2−4ac
x=2×660±(−60)2−4×6×140
Simplify the expression
x=1260±(−60)2−4×6×140
Simplify the expression
More Steps

Evaluate
(−60)2−4×6×140
Multiply the terms
More Steps

Multiply the terms
4×6×140
Multiply the terms
24×140
Multiply the numbers
3360
(−60)2−3360
Rewrite the expression
602−3360
Evaluate the power
3600−3360
Subtract the numbers
240
x=1260±240
Simplify the radical expression
More Steps

Evaluate
240
Write the expression as a product where the root of one of the factors can be evaluated
16×15
Write the number in exponential form with the base of 4
42×15
The root of a product is equal to the product of the roots of each factor
42×15
Reduce the index of the radical and exponent with 2
415
x=1260±415
Separate the equation into 2 possible cases
x=1260+415x=1260−415
Simplify the expression
More Steps

Evaluate
x=1260+415
Divide the terms
More Steps

Evaluate
1260+415
Rewrite the expression
124(15+15)
Cancel out the common factor 4
315+15
x=315+15
x=315+15x=1260−415
Simplify the expression
More Steps

Evaluate
x=1260−415
Divide the terms
More Steps

Evaluate
1260−415
Rewrite the expression
124(15−15)
Cancel out the common factor 4
315−15
x=315−15
x=315+15x=315−15
Solution
x1=315−15,x2=315+15
Alternative Form
x1≈3.709006,x2≈6.290994
Show Solution
