Question
Solve the inequality
p∈(−∞,−57)∪(1,+∞)
Evaluate
2−∣−10p−2∣<−10
Calculate the absolute value
More Steps

Calculate
∣−10p−2∣
Rewrite the expression
∣10p+2∣
Rewrite the expression
∣2(5p+1)∣
Rewrite the expression
2∣5p+1∣
2−2∣5p+1∣<−10
Move the expression to the left side
2−2∣5p+1∣−(−10)<0
Subtract the numbers
More Steps

Evaluate
2−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2+10
Add the numbers
12
12−2∣5p+1∣<0
Rewrite the expression
−2∣5p+1∣<−12
Change the signs on both sides of the inequality and flip the inequality sign
2∣5p+1∣>12
Divide both sides
22∣5p+1∣>212
Divide the numbers
∣5p+1∣>212
Divide the numbers
More Steps

Evaluate
212
Reduce the numbers
16
Calculate
6
∣5p+1∣>6
Separate the inequality into 2 possible cases
5p+1>65p+1<−6
Solve the inequality for p
More Steps

Evaluate
5p+1>6
Move the constant to the right side
5p>6−1
Subtract the numbers
5p>5
Divide both sides
55p>55
Divide the numbers
p>55
Divide the numbers
More Steps

Evaluate
55
Reduce the numbers
11
Calculate
1
p>1
p>15p+1<−6
Solve the inequality for p
More Steps

Evaluate
5p+1<−6
Move the constant to the right side
5p<−6−1
Subtract the numbers
5p<−7
Divide both sides
55p<5−7
Divide the numbers
p<5−7
Use b−a=−ba=−ba to rewrite the fraction
p<−57
p>1p<−57
Solution
p∈(−∞,−57)∪(1,+∞)
Show Solution
