Question
Simplify the expression
1224−3x2+2x
Evaluate
2−(x−32)×4x
Multiply the terms
More Steps

Evaluate
(x−32)×4x
Rewrite the expression
More Steps

Evaluate
x−32
Reduce fractions to a common denominator
3x×3−32
Write all numerators above the common denominator
3x×3−2
Use the commutative property to reorder the terms
33x−2
33x−2×4x
Multiply the terms
3×4(3x−2)x
Multiply the terms
3×4x(3x−2)
Multiply the terms
12x(3x−2)
2−12x(3x−2)
Reduce fractions to a common denominator
122×12−12x(3x−2)
Write all numerators above the common denominator
122×12−x(3x−2)
Multiply the numbers
1224−x(3x−2)
Multiply the terms
More Steps

Evaluate
x(3x−2)
Apply the distributive property
x×3x−x×2
Multiply the terms
More Steps

Evaluate
x×3x
Use the commutative property to reorder the terms
3x×x
Multiply the terms
3x2
3x2−x×2
Use the commutative property to reorder the terms
3x2−2x
1224−(3x2−2x)
Solution
1224−3x2+2x
Show Solution

Find the roots
x1=31−73,x2=31+73
Alternative Form
x1≈−2.514668,x2≈3.181335
Evaluate
2−(x−32)×4x
To find the roots of the expression,set the expression equal to 0
2−(x−32)×4x=0
Multiply the terms
More Steps

Evaluate
(x−32)×4x
Rewrite the expression
More Steps

Evaluate
x−32
Reduce fractions to a common denominator
3x×3−32
Write all numerators above the common denominator
3x×3−2
Use the commutative property to reorder the terms
33x−2
33x−2×4x
Multiply the terms
3×4(3x−2)x
Multiply the terms
3×4x(3x−2)
Multiply the terms
12x(3x−2)
2−12x(3x−2)=0
Subtract the terms
More Steps

Simplify
2−12x(3x−2)
Reduce fractions to a common denominator
122×12−12x(3x−2)
Write all numerators above the common denominator
122×12−x(3x−2)
Multiply the numbers
1224−x(3x−2)
Multiply the terms
More Steps

Evaluate
x(3x−2)
Apply the distributive property
x×3x−x×2
Multiply the terms
3x2−x×2
Use the commutative property to reorder the terms
3x2−2x
1224−(3x2−2x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1224−3x2+2x
1224−3x2+2x=0
Simplify
24−3x2+2x=0
Rewrite in standard form
−3x2+2x+24=0
Multiply both sides
3x2−2x−24=0
Substitute a=3,b=−2 and c=−24 into the quadratic formula x=2a−b±b2−4ac
x=2×32±(−2)2−4×3(−24)
Simplify the expression
x=62±(−2)2−4×3(−24)
Simplify the expression
More Steps

Evaluate
(−2)2−4×3(−24)
Multiply
More Steps

Multiply the terms
4×3(−24)
Rewrite the expression
−4×3×24
Multiply the terms
−288
(−2)2−(−288)
Rewrite the expression
22−(−288)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+288
Evaluate the power
4+288
Add the numbers
292
x=62±292
Simplify the radical expression
More Steps

Evaluate
292
Write the expression as a product where the root of one of the factors can be evaluated
4×73
Write the number in exponential form with the base of 2
22×73
The root of a product is equal to the product of the roots of each factor
22×73
Reduce the index of the radical and exponent with 2
273
x=62±273
Separate the equation into 2 possible cases
x=62+273x=62−273
Simplify the expression
More Steps

Evaluate
x=62+273
Divide the terms
More Steps

Evaluate
62+273
Rewrite the expression
62(1+73)
Cancel out the common factor 2
31+73
x=31+73
x=31+73x=62−273
Simplify the expression
More Steps

Evaluate
x=62−273
Divide the terms
More Steps

Evaluate
62−273
Rewrite the expression
62(1−73)
Cancel out the common factor 2
31−73
x=31−73
x=31+73x=31−73
Solution
x1=31−73,x2=31+73
Alternative Form
x1≈−2.514668,x2≈3.181335
Show Solution
