Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
2−33+3≤x≤233+3
Alternative Form
x∈[2−33+3,233+3]
Evaluate
2−(x−3)(x×1)≥−4
Remove the parentheses
2−(x−3)x×1≥−4
Multiply the terms
More Steps

Evaluate
(x−3)x×1
Rewrite the expression
(x−3)x
Multiply the terms
x(x−3)
2−x(x−3)≥−4
Move the expression to the left side
2−x(x−3)−(−4)≥0
Subtract the terms
More Steps

Evaluate
2−x(x−3)−(−4)
Expand the expression
More Steps

Calculate
−x(x−3)
Apply the distributive property
−x×x−(−x×3)
Multiply the terms
−x2−(−x×3)
Use the commutative property to reorder the terms
−x2−(−3x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2+3x
2−x2+3x−(−4)
Subtract the numbers
More Steps

Evaluate
2−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2+4
Add the numbers
6
6−x2+3x
6−x2+3x≥0
Rewrite the expression
6−x2+3x=0
Add or subtract both sides
−x2+3x=−6
Divide both sides
−1−x2+3x=−1−6
Evaluate
x2−3x=6
Add the same value to both sides
x2−3x+49=6+49
Simplify the expression
(x−23)2=433
Take the root of both sides of the equation and remember to use both positive and negative roots
x−23=±433
Simplify the expression
x−23=±233
Separate the equation into 2 possible cases
x−23=233x−23=−233
Solve the equation
More Steps

Evaluate
x−23=233
Move the constant to the right-hand side and change its sign
x=233+23
Write all numerators above the common denominator
x=233+3
x=233+3x−23=−233
Solve the equation
More Steps

Evaluate
x−23=−233
Move the constant to the right-hand side and change its sign
x=−233+23
Write all numerators above the common denominator
x=2−33+3
x=233+3x=2−33+3
Determine the test intervals using the critical values
x<2−33+32−33+3<x<233+3x>233+3
Choose a value form each interval
x1=−2x2=2x3=5
To determine if x<2−33+3 is the solution to the inequality,test if the chosen value x=−2 satisfies the initial inequality
More Steps

Evaluate
2−(−2(−2−3))≥−4
Simplify
More Steps

Evaluate
2−(−2(−2−3))
Subtract the numbers
2−(−2(−5))
Multiply the numbers
2−10
Subtract the numbers
−8
−8≥−4
Check the inequality
false
x<2−33+3 is not a solutionx2=2x3=5
To determine if 2−33+3<x<233+3 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
2−2(2−3)≥−4
Simplify
More Steps

Evaluate
2−2(2−3)
Subtract the numbers
2−2(−1)
Simplify
2−(−2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2+2
Add the numbers
4
4≥−4
Check the inequality
true
x<2−33+3 is not a solution2−33+3<x<233+3 is the solutionx3=5
To determine if x>233+3 is the solution to the inequality,test if the chosen value x=5 satisfies the initial inequality
More Steps

Evaluate
2−5(5−3)≥−4
Simplify
More Steps

Evaluate
2−5(5−3)
Subtract the numbers
2−5×2
Multiply the numbers
2−10
Subtract the numbers
−8
−8≥−4
Check the inequality
false
x<2−33+3 is not a solution2−33+3<x<233+3 is the solutionx>233+3 is not a solution
The original inequality is a nonstrict inequality,so include the critical value in the solution
2−33+3≤x≤233+3 is the solution
Solution
2−33+3≤x≤233+3
Alternative Form
x∈[2−33+3,233+3]
Show Solution
