Question
Factor the expression
−(x2−x+2)(x2+x−1)
Evaluate
2−x4−3x
Calculate
−x4−x3+x2+x3+x2−x−2x2−2x+2
Rewrite the expression
−x2×x2−x2×x+x2+x×x2+x×x−x−2x2−2x+2
Factor out −x2 from the expression
−x2(x2+x−1)+x×x2+x×x−x−2x2−2x+2
Factor out x from the expression
−x2(x2+x−1)+x(x2+x−1)−2x2−2x+2
Factor out −2 from the expression
−x2(x2+x−1)+x(x2+x−1)−2(x2+x−1)
Factor out x2+x−1 from the expression
(−x2+x−2)(x2+x−1)
Solution
−(x2−x+2)(x2+x−1)
Show Solution

Find the roots
x1=−21+5,x2=2−1+5,x3=21−27i,x4=21+27i
Alternative Form
x1≈−1.618034,x2≈0.618034,x3≈0.5−1.322876i,x4≈0.5+1.322876i
Evaluate
2−x4−3x
To find the roots of the expression,set the expression equal to 0
2−x4−3x=0
Factor the expression
(−x2+x−2)(x2+x−1)=0
Separate the equation into 2 possible cases
−x2+x−2=0x2+x−1=0
Solve the equation
More Steps

Evaluate
−x2+x−2=0
Multiply both sides
x2−x+2=0
Substitute a=1,b=−1 and c=2 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4×2
Simplify the expression
More Steps

Evaluate
(−1)2−4×2
Evaluate the power
1−4×2
Multiply the numbers
1−8
Subtract the numbers
−7
x=21±−7
Simplify the radical expression
More Steps

Evaluate
−7
Evaluate the power
7×−1
Evaluate the power
7×i
x=21±7×i
Separate the equation into 2 possible cases
x=21+7×ix=21−7×i
Simplify the expression
x=21+27ix=21−7×i
Simplify the expression
x=21+27ix=21−27i
x=21+27ix=21−27ix2+x−1=0
Solve the equation
More Steps

Evaluate
x2+x−1=0
Substitute a=1,b=1 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2−1±12−4(−1)
Simplify the expression
More Steps

Evaluate
12−4(−1)
1 raised to any power equals to 1
1−4(−1)
Simplify
1−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4
Add the numbers
5
x=2−1±5
Separate the equation into 2 possible cases
x=2−1+5x=2−1−5
Use b−a=−ba=−ba to rewrite the fraction
x=2−1+5x=−21+5
x=21+27ix=21−27ix=2−1+5x=−21+5
Solution
x1=−21+5,x2=2−1+5,x3=21−27i,x4=21+27i
Alternative Form
x1≈−1.618034,x2≈0.618034,x3≈0.5−1.322876i,x4≈0.5+1.322876i
Show Solution
