Question
Simplify the expression
738134880x5
Evaluate
365200x×7822x(2x3×13)
Remove the parentheses
365200x×7822x×2x3×13
Cancel out the common factor 5
7340x×7822x×2x3×13
Multiply the terms
More Steps

Evaluate
7340×7822×2×13
Multiply the terms
More Steps

Evaluate
7340×7822
Multiply the numbers
7340×7822
Multiply the numbers
73312880
73312880×2×13
Multiply the terms
More Steps

Evaluate
73312880×2
Multiply the numbers
73312880×2
Multiply the numbers
73625760
73625760×13
Multiply the numbers
73625760×13
Multiply the numbers
738134880
738134880x×x×x3
Multiply the terms with the same base by adding their exponents
738134880x1+3×x
Add the numbers
738134880x4×x
Multiply the terms with the same base by adding their exponents
738134880x1+4
Solution
738134880x5
Show Solution

Find the roots
x=0
Evaluate
365200x×7822x(2x3×13)
To find the roots of the expression,set the expression equal to 0
365200x×7822x(2x3×13)=0
Multiply the terms
365200x×7822x×26x3=0
Cancel out the common factor 5
7340x×7822x×26x3=0
Multiply
More Steps

Multiply the terms
7340x×7822x×26x3
Multiply the terms
More Steps

Evaluate
7340×7822×26
Multiply the terms
73312880×26
Multiply the numbers
73312880×26
Multiply the numbers
738134880
738134880x×x×x3
Multiply the terms with the same base by adding their exponents
738134880x1+3×x
Add the numbers
738134880x4×x
Multiply the terms with the same base by adding their exponents
738134880x1+4
Add the numbers
738134880x5
738134880x5=0
Rewrite the expression
x5=0
Solution
x=0
Show Solution
