Question
Simplify the expression
738134880x5−114934365x
Evaluate
365200x×7822x(2x3×13)−1352169x×85
Remove the parentheses
365200x×7822x×2x3×13−1352169x×85
Cancel out the common factor 5
7340x×7822x×2x3×13−1352169x×85
Multiply
More Steps

Multiply the terms
7340x×7822x×2x3×13
Multiply the terms
More Steps

Evaluate
7340×7822×2×13
Multiply the terms
73312880×2×13
Multiply the terms
73625760×13
Multiply the numbers
73625760×13
Multiply the numbers
738134880
738134880x×x×x3
Multiply the terms with the same base by adding their exponents
738134880x1+3×x
Add the numbers
738134880x4×x
Multiply the terms with the same base by adding their exponents
738134880x1+4
Add the numbers
738134880x5
738134880x5−1352169x×85
Solution
738134880x5−114934365x
Show Solution

Factor the expression
7365x(125152x4−129080133)
Evaluate
365200x×7822x(2x3×13)−1352169x×85
Remove the parentheses
365200x×7822x×2x3×13−1352169x×85
Cancel out the common factor 5
7340x×7822x×2x3×13−1352169x×85
Multiply the terms
7340x×7822x×26x3−1352169x×85
Multiply
More Steps

Multiply the terms
7340x×7822x×26x3
Multiply the terms
More Steps

Evaluate
7340×7822×26
Multiply the terms
73312880×26
Multiply the numbers
73312880×26
Multiply the numbers
738134880
738134880x×x×x3
Multiply the terms with the same base by adding their exponents
738134880x1+3×x
Add the numbers
738134880x4×x
Multiply the terms with the same base by adding their exponents
738134880x1+4
Add the numbers
738134880x5
738134880x5−1352169x×85
Multiply the terms
738134880x5−114934365x
Rewrite the expression
7365x×125152x4−7365x×129080133
Solution
7365x(125152x4−129080133)
Show Solution

Find the roots
x1=−156444129080133×78223,x2=0,x3=156444129080133×78223
Alternative Form
x1≈−5.667029,x2=0,x3≈5.667029
Evaluate
365200x×7822x(2x3×13)−1352169x×85
To find the roots of the expression,set the expression equal to 0
365200x×7822x(2x3×13)−1352169x×85=0
Multiply the terms
365200x×7822x×26x3−1352169x×85=0
Cancel out the common factor 5
7340x×7822x×26x3−1352169x×85=0
Multiply
More Steps

Multiply the terms
7340x×7822x×26x3
Multiply the terms
More Steps

Evaluate
7340×7822×26
Multiply the terms
73312880×26
Multiply the numbers
73312880×26
Multiply the numbers
738134880
738134880x×x×x3
Multiply the terms with the same base by adding their exponents
738134880x1+3×x
Add the numbers
738134880x4×x
Multiply the terms with the same base by adding their exponents
738134880x1+4
Add the numbers
738134880x5
738134880x5−1352169x×85=0
Multiply the terms
738134880x5−114934365x=0
Factor the expression
x(738134880x4−114934365)=0
Separate the equation into 2 possible cases
x=0738134880x4−114934365=0
Solve the equation
More Steps

Evaluate
738134880x4−114934365=0
Move the constant to the right-hand side and change its sign
738134880x4=0+114934365
Removing 0 doesn't change the value,so remove it from the expression
738134880x4=114934365
Multiply by the reciprocal
738134880x4×813488073=114934365×813488073
Multiply
x4=114934365×813488073
Multiply
More Steps

Evaluate
114934365×813488073
Reduce the numbers
1768221×12515273
Multiply the numbers
1251521768221×73
Multiply the numbers
125152129080133
x4=125152129080133
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4125152129080133
Simplify the expression
More Steps

Evaluate
4125152129080133
To take a root of a fraction,take the root of the numerator and denominator separately
41251524129080133
Simplify the radical expression
2478224129080133
Multiply by the Conjugate
247822×4782234129080133×478223
The product of roots with the same index is equal to the root of the product
247822×4782234129080133×78223
Multiply the numbers
156444129080133×78223
x=±156444129080133×78223
Separate the equation into 2 possible cases
x=156444129080133×78223x=−156444129080133×78223
x=0x=156444129080133×78223x=−156444129080133×78223
Solution
x1=−156444129080133×78223,x2=0,x3=156444129080133×78223
Alternative Form
x1≈−5.667029,x2=0,x3≈5.667029
Show Solution
