Question Simplify the expression 2011 Evaluate 2011−2015f3×f30×f34×1335iDivide the terms 2011−2015f3×0×f34×1335iAny expression multiplied by 0 equals 0 2011−0Solution 2011 Show Solution Find the excluded values f=0 Evaluate 2011−2015f3×f30×f34×1335iTo find the excluded values,set the denominators equal to 0 f3=0Solution f=0 Show Solution Find the roots f∈∅ Evaluate 2011−2015f3×f30×f34×1335iTo find the roots of the expression,set the expression equal to 0 2011−2015f3×f30×f34×1335i=0The only way a power can not be 0 is when the base not equals 0 2011−2015f3×f30×f34×1335i=0,f=0Calculate 2011−2015f3×f30×f34×1335i=0Divide the terms 2011−2015f3×0×f34×1335i=0Multiply More Steps Multiply the terms 2015f3×0×f34×1335iMultiply the terms More Steps Evaluate 2015×0×1335Any expression multiplied by 0 equals 0 0×1335Any expression multiplied by 0 equals 0 0 0×f3×f34iAny expression multiplied by 0 equals 0 0×f34iAny expression multiplied by 0 equals 0 0×iAny expression multiplied by 0 equals 0 0 2011−0=0Removing 0 doesn't change the value,so remove it from the expression 2011=0Solution f∈∅ Show Solution