Question
Simplify the expression
51772601−cos2(a)8−8sin(a)−7cos2(a)
Evaluate
2020csc(a)−7×2563csc(a)−1
Multiply the terms
5177260csc(a)−7×csc(a)−1
Multiply the terms
More Steps

Evaluate
csc(a)−7×csc(a)−1
The product of roots with the same index is equal to the root of the product
(csc(a)−7)(csc(a)−1)
Calculate the product
More Steps

Use the the distributive property to expand the expression
csc(a)csc(a)+csc(a)(−1)−7csc(a)−7(−1)
Multiply the terms
csc2(a)+csc(a)(−1)−7csc(a)−7(−1)
Multiply the terms
csc2(a)−csc(a)−7csc(a)−7(−1)
Simplify
csc2(a)−csc(a)−7csc(a)+7
Calculate
csc2(a)−8csc(a)+7
csc2(a)−8csc(a)+7
5177260csc2(a)−8csc(a)+7
Simplify
5177260sin2(a)1−8sin(a)+7sin2(a)
Solution
51772601−cos2(a)8−8sin(a)−7cos2(a)
Show Solution
