Question
Simplify the expression
53100k106677900k−2117
Evaluate
2021−12−2117÷53100k
Rewrite the expression
2021−12−53100k2117
Subtract the numbers
2009−53100k2117
Reduce fractions to a common denominator
53100k2009×53100k−53100k2117
Write all numerators above the common denominator
53100k2009×53100k−2117
Solution
53100k106677900k−2117
Show Solution

Find the excluded values
k=0
Evaluate
2021−12−2117÷(53100k)
To find the excluded values,set the denominators equal to 0
53100k=0
Solution
k=0
Show Solution

Find the roots
k=1066779002117
Alternative Form
k≈1.984479×10−5
Evaluate
2021−12−2117÷(53100k)
To find the roots of the expression,set the expression equal to 0
2021−12−2117÷(53100k)=0
Find the domain
2021−12−2117÷(53100k)=0,k=0
Calculate
2021−12−2117÷(53100k)=0
Multiply the terms
2021−12−2117÷53100k=0
Rewrite the expression
2021−12−53100k2117=0
Subtract the numbers
2009−53100k2117=0
Subtract the terms
More Steps

Simplify
2009−53100k2117
Reduce fractions to a common denominator
53100k2009×53100k−53100k2117
Write all numerators above the common denominator
53100k2009×53100k−2117
Multiply the terms
53100k106677900k−2117
53100k106677900k−2117=0
Cross multiply
106677900k−2117=53100k×0
Simplify the equation
106677900k−2117=0
Move the constant to the right side
106677900k=0+2117
Removing 0 doesn't change the value,so remove it from the expression
106677900k=2117
Divide both sides
106677900106677900k=1066779002117
Divide the numbers
k=1066779002117
Check if the solution is in the defined range
k=1066779002117,k=0
Solution
k=1066779002117
Alternative Form
k≈1.984479×10−5
Show Solution
