Question Simplify the expression 225d41 Evaluate 75205÷(d×15)Cancel out the common factor 5 1541÷(d×15)Use the commutative property to reorder the terms 1541÷15dMultiply by the reciprocal 1541×15d1Multiply the terms 15×15d41Solution 225d41 Show Solution Find the excluded values d=0 Evaluate 75205÷(d×15)To find the excluded values,set the denominators equal to 0 d×15=0Use the commutative property to reorder the terms 15d=0Solution d=0 Show Solution Find the roots d∈∅ Evaluate 75205÷(d×15)To find the roots of the expression,set the expression equal to 0 75205÷(d×15)=0Find the domain More Steps Evaluate d×15=0Use the commutative property to reorder the terms 15d=0Rewrite the expression d=0 75205÷(d×15)=0,d=0Calculate 75205÷(d×15)=0Cancel out the common factor 5 1541÷(d×15)=0Use the commutative property to reorder the terms 1541÷15d=0Divide the terms More Steps Evaluate 1541÷15dMultiply by the reciprocal 1541×15d1Multiply the terms 15×15d41Multiply the terms 225d41 225d41=0Cross multiply 41=225d×0Simplify the equation 41=0Solution d∈∅ Show Solution