Question
Simplify the expression
20f−320f4
Evaluate
20f−4×5f4×16
Solution
More Steps

Evaluate
4×5×16
Multiply the terms
20×16
Multiply the numbers
320
20f−320f4
Show Solution

Factor the expression
20f(1−16f3)
Evaluate
20f−4×5f4×16
Multiply the terms
More Steps

Evaluate
4×5×16
Multiply the terms
20×16
Multiply the numbers
320
20f−320f4
Rewrite the expression
20f−20f×16f3
Solution
20f(1−16f3)
Show Solution

Find the roots
f1=0,f2=434
Alternative Form
f1=0,f2≈0.39685
Evaluate
20f−4(5f4)×16
To find the roots of the expression,set the expression equal to 0
20f−4(5f4)×16=0
Multiply the terms
20f−4×5f4×16=0
Multiply the terms
More Steps

Multiply the terms
4×5f4×16
Multiply the terms
More Steps

Evaluate
4×5×16
Multiply the terms
20×16
Multiply the numbers
320
320f4
20f−320f4=0
Factor the expression
20f(1−16f3)=0
Divide both sides
f(1−16f3)=0
Separate the equation into 2 possible cases
f=01−16f3=0
Solve the equation
More Steps

Evaluate
1−16f3=0
Move the constant to the right-hand side and change its sign
−16f3=0−1
Removing 0 doesn't change the value,so remove it from the expression
−16f3=−1
Change the signs on both sides of the equation
16f3=1
Divide both sides
1616f3=161
Divide the numbers
f3=161
Take the 3-th root on both sides of the equation
3f3=3161
Calculate
f=3161
Simplify the root
More Steps

Evaluate
3161
To take a root of a fraction,take the root of the numerator and denominator separately
31631
Simplify the radical expression
3161
Simplify the radical expression
2321
Multiply by the Conjugate
232×322322
Simplify
232×32234
Multiply the numbers
434
f=434
f=0f=434
Solution
f1=0,f2=434
Alternative Form
f1=0,f2≈0.39685
Show Solution
