Question
Factor the expression
5(4y2−32y−33)
Evaluate
20y2−160y−165
Solution
5(4y2−32y−33)
Show Solution

Find the roots
y1=28−97,y2=28+97
Alternative Form
y1≈−0.924429,y2≈8.924429
Evaluate
20y2−160y−165
To find the roots of the expression,set the expression equal to 0
20y2−160y−165=0
Substitute a=20,b=−160 and c=−165 into the quadratic formula y=2a−b±b2−4ac
y=2×20160±(−160)2−4×20(−165)
Simplify the expression
y=40160±(−160)2−4×20(−165)
Simplify the expression
More Steps

Evaluate
(−160)2−4×20(−165)
Multiply
More Steps

Multiply the terms
4×20(−165)
Rewrite the expression
−4×20×165
Multiply the terms
−13200
(−160)2−(−13200)
Rewrite the expression
1602−(−13200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1602+13200
Evaluate the power
25600+13200
Add the numbers
38800
y=40160±38800
Simplify the radical expression
More Steps

Evaluate
38800
Write the expression as a product where the root of one of the factors can be evaluated
400×97
Write the number in exponential form with the base of 20
202×97
The root of a product is equal to the product of the roots of each factor
202×97
Reduce the index of the radical and exponent with 2
2097
y=40160±2097
Separate the equation into 2 possible cases
y=40160+2097y=40160−2097
Simplify the expression
More Steps

Evaluate
y=40160+2097
Divide the terms
More Steps

Evaluate
40160+2097
Rewrite the expression
4020(8+97)
Cancel out the common factor 20
28+97
y=28+97
y=28+97y=40160−2097
Simplify the expression
More Steps

Evaluate
y=40160−2097
Divide the terms
More Steps

Evaluate
40160−2097
Rewrite the expression
4020(8−97)
Cancel out the common factor 20
28−97
y=28−97
y=28+97y=28−97
Solution
y1=28−97,y2=28+97
Alternative Form
y1≈−0.924429,y2≈8.924429
Show Solution
