Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=2121−291,x2=2121+291
Alternative Form
x1≈0.091486,x2≈1.908514
Evaluate
21(2−x)×12x=44
Multiply
More Steps

Evaluate
21(2−x)×12x
Multiply the terms
252(2−x)x
Multiply the terms
252x(2−x)
252x(2−x)=44
Expand the expression
More Steps

Evaluate
252x(2−x)
Apply the distributive property
252x×2−252x×x
Multiply the numbers
504x−252x×x
Multiply the terms
504x−252x2
504x−252x2=44
Move the expression to the left side
504x−252x2−44=0
Rewrite in standard form
−252x2+504x−44=0
Multiply both sides
252x2−504x+44=0
Substitute a=252,b=−504 and c=44 into the quadratic formula x=2a−b±b2−4ac
x=2×252504±(−504)2−4×252×44
Simplify the expression
x=504504±(−504)2−4×252×44
Simplify the expression
More Steps

Evaluate
(−504)2−4×252×44
Multiply the terms
More Steps

Multiply the terms
4×252×44
Multiply the terms
1008×44
Multiply the numbers
44352
(−504)2−44352
Calculate
5042−44352
x=504504±5042−44352
Simplify the radical expression
More Steps

Evaluate
5042−44352
Add the numbers
209664
Write the expression as a product where the root of one of the factors can be evaluated
2304×91
Write the number in exponential form with the base of 48
482×91
The root of a product is equal to the product of the roots of each factor
482×91
Reduce the index of the radical and exponent with 2
4891
x=504504±4891
Separate the equation into 2 possible cases
x=504504+4891x=504504−4891
Simplify the expression
More Steps

Evaluate
x=504504+4891
Divide the terms
More Steps

Evaluate
504504+4891
Rewrite the expression
50424(21+291)
Cancel out the common factor 24
2121+291
x=2121+291
x=2121+291x=504504−4891
Simplify the expression
More Steps

Evaluate
x=504504−4891
Divide the terms
More Steps

Evaluate
504504−4891
Rewrite the expression
50424(21−291)
Cancel out the common factor 24
2121−291
x=2121−291
x=2121+291x=2121−291
Solution
x1=2121−291,x2=2121+291
Alternative Form
x1≈0.091486,x2≈1.908514
Show Solution
