Question
Simplify the expression
2424a2b−6c−3da−4b−6c3d
Evaluate
212a2b−3c−(3×2d)a−2b−3c3d
Remove the parentheses
212a2b−3c−3×2da−2b−3c3d
Multiply the terms
More Steps

Multiply the terms
−3×2da
Multiply the terms
More Steps

Evaluate
3×2da
Multiply the terms
23da
Multiply the terms
23da
−23da
212a2b−3c−23da−2b−3c3d
Reduce fractions to a common denominator
2212a2b×2−23c×2−23da−22b×2−23c3d×2
Write all numerators above the common denominator
2212a2b×2−3c×2−3da−2b×2−3c3d×2
Multiply the terms
2424a2b−3c×2−3da−2b×2−3c3d×2
Multiply the terms
2424a2b−6c−3da−2b×2−3c3d×2
Multiply the terms
2424a2b−6c−3da−4b−3c3d×2
Solution
2424a2b−6c−3da−4b−6c3d
Show Solution
