Question
Simplify the expression
21476x2−20e7x5
Evaluate
21476x2−2e6x5e×10
Solution
More Steps

Evaluate
2e6x5e×10
Multiply the terms
20e6x5e
Multiply the terms with the same base by adding their exponents
20e6+1x5
Add the numbers
20e7x5
21476x2−20e7x5
Show Solution

Factor the expression
4x2(5369−5e7x3)
Evaluate
21476x2−2e6x5e×10
Multiply
More Steps

Evaluate
2e6x5e×10
Multiply the terms
20e6x5e
Multiply the terms with the same base by adding their exponents
20e6+1x5
Add the numbers
20e7x5
21476x2−20e7x5
Rewrite the expression
4x2×5369−4x2×5e7x3
Solution
4x2(5369−5e7x3)
Show Solution

Find the roots
x1=0,x2=5e33134225e2
Alternative Form
x1=0,x2≈0.993011
Evaluate
21476x2−2e6x5e×10
To find the roots of the expression,set the expression equal to 0
21476x2−2e6x5e×10=0
Multiply
More Steps

Multiply the terms
2e6x5e×10
Multiply the terms
20e6x5e
Multiply the terms with the same base by adding their exponents
20e6+1x5
Add the numbers
20e7x5
21476x2−20e7x5=0
Factor the expression
4x2(5369−5e7x3)=0
Divide both sides
x2(5369−5e7x3)=0
Separate the equation into 2 possible cases
x2=05369−5e7x3=0
The only way a power can be 0 is when the base equals 0
x=05369−5e7x3=0
Solve the equation
More Steps

Evaluate
5369−5e7x3=0
Move the constant to the right-hand side and change its sign
−5e7x3=0−5369
Removing 0 doesn't change the value,so remove it from the expression
−5e7x3=−5369
Change the signs on both sides of the equation
5e7x3=5369
Divide both sides
5e75e7x3=5e75369
Divide the numbers
x3=5e75369
Take the 3-th root on both sides of the equation
3x3=35e75369
Calculate
x=35e75369
Simplify the root
More Steps

Evaluate
35e75369
To take a root of a fraction,take the root of the numerator and denominator separately
35e735369
Simplify the radical expression
e235e35369
Multiply by the Conjugate
e235e×352e235369×352e2
Multiply the numbers
e235e×352e23134225e2
Multiply the numbers
5e33134225e2
x=5e33134225e2
x=0x=5e33134225e2
Solution
x1=0,x2=5e33134225e2
Alternative Form
x1=0,x2≈0.993011
Show Solution
