Question
Simplify the expression
2z23
Evaluate
192160÷(3z2×19160)÷3
Multiply the terms
More Steps

Multiply the terms
3z2×19160
Multiply the terms
More Steps

Evaluate
3×19160
Multiply the numbers
193×160
Multiply the numbers
19480
19480z2
192160÷19480z2÷3
Divide the terms
More Steps

Evaluate
192160÷19480z2
Rewrite the expression
192160÷19480z2
Multiply by the reciprocal
192160×480z219
Cancel out the common factor 240
199×2z219
Cancel out the common factor 19
9×2z21
Multiply the terms
2z29
2z29÷3
Multiply by the reciprocal
2z29×31
Cancel out the common factor 3
2z23×1
Solution
2z23
Show Solution

Find the excluded values
z=0
Evaluate
192160÷(3z2×19160)÷3
To find the excluded values,set the denominators equal to 0
3z2×19160=0
Multiply the terms
More Steps

Evaluate
3×19160
Multiply the numbers
193×160
Multiply the numbers
19480
19480z2=0
Rewrite the expression
z2=0
Solution
z=0
Show Solution

Find the roots
z∈∅
Evaluate
192160÷(3z2×19160)÷3
To find the roots of the expression,set the expression equal to 0
192160÷(3z2×19160)÷3=0
Find the domain
More Steps

Evaluate
3z2×19160=0
Multiply the terms
More Steps

Evaluate
3×19160
Multiply the numbers
193×160
Multiply the numbers
19480
19480z2=0
Rewrite the expression
z2=0
The only way a power can not be 0 is when the base not equals 0
z=0
192160÷(3z2×19160)÷3=0,z=0
Calculate
192160÷(3z2×19160)÷3=0
Multiply the terms
More Steps

Multiply the terms
3z2×19160
Multiply the terms
More Steps

Evaluate
3×19160
Multiply the numbers
193×160
Multiply the numbers
19480
19480z2
192160÷19480z2÷3=0
Divide the terms
More Steps

Evaluate
192160÷19480z2
Rewrite the expression
192160÷19480z2
Multiply by the reciprocal
192160×480z219
Cancel out the common factor 240
199×2z219
Cancel out the common factor 19
9×2z21
Multiply the terms
2z29
2z29÷3=0
Divide the terms
More Steps

Evaluate
2z29÷3
Multiply by the reciprocal
2z29×31
Cancel out the common factor 3
2z23×1
Multiply the terms
2z23
2z23=0
Cross multiply
3=2z2×0
Simplify the equation
3=0
Solution
z∈∅
Show Solution
