Question  
 Simplify the expression
66a3−a
Evaluate
22a3×3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
66a3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×12a2×3a3×1
Rewrite the expression
a×12a2×3a3
Multiply the terms with the same base by adding their exponents
a1+2+3×12×3
Add the numbers
a6×12×3
Multiply the terms
a6×36
Use the commutative property to reorder the terms
36a6
66a3+36a6+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×13a2×1×a3×2
Rewrite the expression
a×13a2×a3×2
Multiply the terms with the same base by adding their exponents
a1+2+3×13×2
Add the numbers
a6×13×2
Multiply the terms
a6×26
Use the commutative property to reorder the terms
26a6
66a3+36a6+26a6−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
−a×13a2×2a3×1
Rewrite the expression
−a×13a2×2a3
Multiply the terms with the same base by adding their exponents
−a1+2+3×13×2
Add the numbers
−a6×13×2
Multiply the terms
−a6×26
Use the commutative property to reorder the terms
−26a6
66a3+36a6+26a6−26a6−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
−a×12a2×1×a3×3
Rewrite the expression
−a×12a2×a3×3
Multiply the terms with the same base by adding their exponents
−a1+2+3×12×3
Add the numbers
−a6×12×3
Multiply the terms
−a6×36
Use the commutative property to reorder the terms
−36a6
66a3+36a6+26a6−26a6−36a6−a
Calculate the sum or difference
        More Steps
        
Evaluate
36a6+26a6−26a6−36a6
Collect like terms by calculating the sum or difference of their coefficients
(36+26−26−36)a6
Calculate the sum or difference
0×a6
Any expression multiplied by 0 equals 0
0
66a3+0−a
Solution
66a3−a
        Show Solution
        
Factor the expression
a(66a2−1)
Evaluate
22a3×3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
66a3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×12a2×3a3×1
Rewrite the expression
a×12a2×3a3
Multiply the terms with the same base by adding their exponents
a1+2+3×12×3
Add the numbers
a6×12×3
Multiply the terms
a6×36
Use the commutative property to reorder the terms
36a6
66a3+36a6+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×13a2×1×a3×2
Rewrite the expression
a×13a2×a3×2
Multiply the terms with the same base by adding their exponents
a1+2+3×13×2
Add the numbers
a6×13×2
Multiply the terms
a6×26
Use the commutative property to reorder the terms
26a6
66a3+36a6+26a6−a×13a2×2a3×1−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×13a2×2a3×1
Rewrite the expression
a×13a2×2a3
Multiply the terms with the same base by adding their exponents
a1+2+3×13×2
Add the numbers
a6×13×2
Multiply the terms
a6×26
Use the commutative property to reorder the terms
26a6
66a3+36a6+26a6−26a6−a×12a2×1×a3×3−a
Multiply the terms
        More Steps
        
Multiply the terms
a×12a2×1×a3×3
Rewrite the expression
a×12a2×a3×3
Multiply the terms with the same base by adding their exponents
a1+2+3×12×3
Add the numbers
a6×12×3
Multiply the terms
a6×36
Use the commutative property to reorder the terms
36a6
66a3+36a6+26a6−26a6−36a6−a
Add the terms
        More Steps
        
Evaluate
66a3+36a6+26a6
Add the terms
        More Steps
        
Evaluate
36a6+26a6
Collect like terms by calculating the sum or difference of their coefficients
(36+26)a6
Add the numbers
62a6
66a3+62a6
66a3+62a6−26a6−36a6−a
Subtract the terms
        More Steps
        
Simplify
66a3+62a6−26a6
Subtract the terms
        More Steps
        
Evaluate
62a6−26a6
Collect like terms by calculating the sum or difference of their coefficients
(62−26)a6
Subtract the numbers
36a6
66a3+36a6
66a3+36a6−36a6−a
Calculate the sum or difference
        More Steps
        
Simplify
66a3+36a6−36a6
The sum of two opposites equals 0
        More Steps
        
Evaluate
36a6−36a6
Collect like terms
(36−36)a6
Add the coefficients
0×a6
Calculate
0
66a3+0
Remove 0
66a3
66a3−a
Rewrite the expression
a×66a2−a
Solution
a(66a2−1)
        Show Solution
        
Find the roots
a1=−6666,a2=0,a3=6666
Alternative Form
 a1≈−0.123091,a2=0,a3≈0.123091
Evaluate
22a3×3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a
To find the roots of the expression,set the expression equal to 0
22a3×3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a=0
Multiply the terms
66a3+a×12a2×3a3×1+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a=0
Multiply the terms
        More Steps
        
Multiply the terms
a×12a2×3a3×1
Rewrite the expression
a×12a2×3a3
Multiply the terms with the same base by adding their exponents
a1+2+3×12×3
Add the numbers
a6×12×3
Multiply the terms
a6×36
Use the commutative property to reorder the terms
36a6
66a3+36a6+a×13a2×1×a3×2−a×13a2×2a3×1−a×12a2×1×a3×3−a=0
Multiply the terms
        More Steps
        
Multiply the terms
a×13a2×1×a3×2
Rewrite the expression
a×13a2×a3×2
Multiply the terms with the same base by adding their exponents
a1+2+3×13×2
Add the numbers
a6×13×2
Multiply the terms
a6×26
Use the commutative property to reorder the terms
26a6
66a3+36a6+26a6−a×13a2×2a3×1−a×12a2×1×a3×3−a=0
Multiply the terms
        More Steps
        
Multiply the terms
a×13a2×2a3×1
Rewrite the expression
a×13a2×2a3
Multiply the terms with the same base by adding their exponents
a1+2+3×13×2
Add the numbers
a6×13×2
Multiply the terms
a6×26
Use the commutative property to reorder the terms
26a6
66a3+36a6+26a6−26a6−a×12a2×1×a3×3−a=0
Add the terms
        More Steps
        
Evaluate
66a3+36a6+26a6
Add the terms
        More Steps
        
Evaluate
36a6+26a6
Collect like terms by calculating the sum or difference of their coefficients
(36+26)a6
Add the numbers
62a6
66a3+62a6
66a3+62a6−26a6−a×12a2×1×a3×3−a=0
Multiply the terms
        More Steps
        
Multiply the terms
a×12a2×1×a3×3
Rewrite the expression
a×12a2×a3×3
Multiply the terms with the same base by adding their exponents
a1+2+3×12×3
Add the numbers
a6×12×3
Multiply the terms
a6×36
Use the commutative property to reorder the terms
36a6
66a3+62a6−26a6−36a6−a=0
Subtract the terms
        More Steps
        
Simplify
66a3+62a6−26a6
Subtract the terms
        More Steps
        
Evaluate
62a6−26a6
Collect like terms by calculating the sum or difference of their coefficients
(62−26)a6
Subtract the numbers
36a6
66a3+36a6
66a3+36a6−36a6−a=0
Calculate the sum or difference
        More Steps
        
Simplify
66a3+36a6−36a6
The sum of two opposites equals 0
        More Steps
        
Evaluate
36a6−36a6
Collect like terms
(36−36)a6
Add the coefficients
0×a6
Calculate
0
66a3+0
Remove 0
66a3
66a3−a=0
Factor the expression
a(66a2−1)=0
Separate the equation into 2 possible cases
a=066a2−1=0
Solve the equation
        More Steps
        
Evaluate
66a2−1=0
Move the constant to the right-hand side and change its sign
66a2=0+1
Removing 0 doesn't change the value,so remove it from the expression
66a2=1
Divide both sides
6666a2=661
Divide the numbers
a2=661
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±661
Simplify the expression
        More Steps
        
Evaluate
661
To take a root of a fraction,take the root of the numerator and denominator separately
661
Simplify the radical expression
661
Multiply by the Conjugate
66×6666
When a square root of an expression is multiplied by itself,the result is that expression
6666
a=±6666
Separate the equation into 2 possible cases
a=6666a=−6666
a=0a=6666a=−6666
Solution
a1=−6666,a2=0,a3=6666
Alternative Form
a1≈−0.123091,a2=0,a3≈0.123091
        Show Solution
        