Question
Simplify the expression
c322206c3−e
Evaluate
22206−c3e
Reduce fractions to a common denominator
c322206c3−c3e
Solution
c322206c3−e
Show Solution

Find the excluded values
c=0
Evaluate
22206−c3e
To find the excluded values,set the denominators equal to 0
c3=0
Solution
c=0
Show Solution

Find the roots
c=222063222062e
Alternative Form
c≈0.049653
Evaluate
22206−c3e
To find the roots of the expression,set the expression equal to 0
22206−c3e=0
The only way a power can not be 0 is when the base not equals 0
22206−c3e=0,c=0
Calculate
22206−c3e=0
Subtract the terms
More Steps

Simplify
22206−c3e
Reduce fractions to a common denominator
c322206c3−c3e
Write all numerators above the common denominator
c322206c3−e
c322206c3−e=0
Cross multiply
22206c3−e=c3×0
Simplify the equation
22206c3−e=0
Move the constant to the right side
22206c3=e
Divide both sides
2220622206c3=22206e
Divide the numbers
c3=22206e
Take the 3-th root on both sides of the equation
3c3=322206e
Calculate
c=322206e
Simplify the root
More Steps

Evaluate
322206e
To take a root of a fraction,take the root of the numerator and denominator separately
3222063e
Multiply by the Conjugate
322206×32220623e×3222062
Multiply the numbers
More Steps

Evaluate
3e×3222062
The product of roots with the same index is equal to the root of the product
3e×222062
Calculate the product
3222062e
322206×32220623222062e
Multiply the numbers
More Steps

Evaluate
322206×3222062
The product of roots with the same index is equal to the root of the product
322206×222062
Calculate the product
3222063
Reduce the index of the radical and exponent with 3
22206
222063222062e
c=222063222062e
Check if the solution is in the defined range
c=222063222062e,c=0
Solution
c=222063222062e
Alternative Form
c≈0.049653
Show Solution
