Question
Simplify the expression
723690er2H1
Evaluate
225÷(45r×18He×215)÷(55r×17)
Multiply
More Steps

Multiply the terms
45r×18He×215
Multiply the terms
More Steps

Evaluate
45×18×215
Multiply the terms
810×215
Multiply the numbers
174150
174150rHe
Multiply the numbers
174150erH
225÷174150erH÷(55r×17)
Divide the terms
More Steps

Evaluate
225÷174150erH
Rewrite the expression
174150erH225
Cancel out the common factor 225
774erH1
774erH1÷(55r×17)
Multiply the terms
774erH1÷935r
Multiply by the reciprocal
774erH1×935r1
Multiply the terms
774erH×935r1
Solution
More Steps

Evaluate
774erH×935r
Multiply the numbers
723690erHr
Multiply the terms
723690er2H
723690er2H1
Show Solution

Find the excluded values
r=0,H=0
Evaluate
225÷(45r×18He×215)÷(55r×17)
To find the excluded values,set the denominators equal to 0
rH=055r×17=0
Solve the equations
More Steps

Evaluate
rH=0
Separate the equation into 2 possible cases
r=0H=0
Find the union
H=0r=0
r=0H=055r×17=0
Solve the equations
More Steps

Evaluate
55r×17=0
Multiply the terms
935r=0
Rewrite the expression
r=0
r=0H=0r=0
Solution
r=0,H=0
Show Solution
