Question Simplify the expression 23x3−138x2+276x−184 Evaluate 23(x−2)3Expand the expression More Steps Evaluate (x−2)3Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression x3−3x2×2+3x×22−23Calculate x3−6x2+12x−8 23(x3−6x2+12x−8)Apply the distributive property 23x3−23×6x2+23×12x−23×8Multiply the numbers 23x3−138x2+23×12x−23×8Multiply the numbers 23x3−138x2+276x−23×8Solution 23x3−138x2+276x−184 Show Solution Find the roots x=2 Evaluate 23(x−2)3To find the roots of the expression,set the expression equal to 0 23(x−2)3=0Rewrite the expression (x−2)3=0The only way a power can be 0 is when the base equals 0 x−2=0Move the constant to the right-hand side and change its sign x=0+2Solution x=2 Show Solution