Question Simplify the expression 170r47 Evaluate 50235÷(r×17)Cancel out the common factor 5 1047÷(r×17)Use the commutative property to reorder the terms 1047÷17rMultiply by the reciprocal 1047×17r1Multiply the terms 10×17r47Solution 170r47 Show Solution Find the excluded values r=0 Evaluate 50235÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 50235÷(r×17)To find the roots of the expression,set the expression equal to 0 50235÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 50235÷(r×17)=0,r=0Calculate 50235÷(r×17)=0Cancel out the common factor 5 1047÷(r×17)=0Use the commutative property to reorder the terms 1047÷17r=0Divide the terms More Steps Evaluate 1047÷17rMultiply by the reciprocal 1047×17r1Multiply the terms 10×17r47Multiply the terms 170r47 170r47=0Cross multiply 47=170r×0Simplify the equation 47=0Solution r∈∅ Show Solution