Question Simplify the expression 195r47 Evaluate 65235÷(r×15)Cancel out the common factor 5 1347÷(r×15)Use the commutative property to reorder the terms 1347÷15rMultiply by the reciprocal 1347×15r1Multiply the terms 13×15r47Solution 195r47 Show Solution Find the excluded values r=0 Evaluate 65235÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65235÷(r×15)To find the roots of the expression,set the expression equal to 0 65235÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 65235÷(r×15)=0,r=0Calculate 65235÷(r×15)=0Cancel out the common factor 5 1347÷(r×15)=0Use the commutative property to reorder the terms 1347÷15r=0Divide the terms More Steps Evaluate 1347÷15rMultiply by the reciprocal 1347×15r1Multiply the terms 13×15r47Multiply the terms 195r47 195r47=0Cross multiply 47=195r×0Simplify the equation 47=0Solution r∈∅ Show Solution