Question Simplify the expression 221r47 Evaluate 65235÷(r×17)Cancel out the common factor 5 1347÷(r×17)Use the commutative property to reorder the terms 1347÷17rMultiply by the reciprocal 1347×17r1Multiply the terms 13×17r47Solution 221r47 Show Solution Find the excluded values r=0 Evaluate 65235÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65235÷(r×17)To find the roots of the expression,set the expression equal to 0 65235÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 65235÷(r×17)=0,r=0Calculate 65235÷(r×17)=0Cancel out the common factor 5 1347÷(r×17)=0Use the commutative property to reorder the terms 1347÷17r=0Divide the terms More Steps Evaluate 1347÷17rMultiply by the reciprocal 1347×17r1Multiply the terms 13×17r47Multiply the terms 221r47 221r47=0Cross multiply 47=221r×0Simplify the equation 47=0Solution r∈∅ Show Solution