Question Simplify the expression 225r47 Evaluate 75235÷(r×15)Cancel out the common factor 5 1547÷(r×15)Use the commutative property to reorder the terms 1547÷15rMultiply by the reciprocal 1547×15r1Multiply the terms 15×15r47Solution 225r47 Show Solution Find the excluded values r=0 Evaluate 75235÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 75235÷(r×15)To find the roots of the expression,set the expression equal to 0 75235÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 75235÷(r×15)=0,r=0Calculate 75235÷(r×15)=0Cancel out the common factor 5 1547÷(r×15)=0Use the commutative property to reorder the terms 1547÷15r=0Divide the terms More Steps Evaluate 1547÷15rMultiply by the reciprocal 1547×15r1Multiply the terms 15×15r47Multiply the terms 225r47 225r47=0Cross multiply 47=225r×0Simplify the equation 47=0Solution r∈∅ Show Solution