Question
Simplify the expression
7e4ca73b
Evaluate
240b÷(c×20)÷(4e4)÷(a×7a6)
Use the commutative property to reorder the terms
240b÷20c÷(4e4)÷(a×7a6)
Multiply the terms
240b÷20c÷4e4÷(a×7a6)
Multiply
More Steps

Multiply the terms
a×7a6
Multiply the terms with the same base by adding their exponents
a1+6×7
Add the numbers
a7×7
Use the commutative property to reorder the terms
7a7
240b÷20c÷4e4÷7a7
Divide the terms
More Steps

Evaluate
240b÷20c
Rewrite the expression
20c240b
Divide the terms
More Steps

Evaluate
20240
Reduce the numbers
112
Calculate
12
c12b
c12b÷4e4÷7a7
Divide the terms
More Steps

Evaluate
c12b÷4e4
Multiply by the reciprocal
c12b×4e41
Cancel out the common factor 4
c3b×e41
Multiply the terms
ce43b
Use the commutative property to reorder the terms
e4c3b
e4c3b÷7a7
Multiply by the reciprocal
e4c3b×7a71
Multiply the terms
e4c×7a73b
Solution
7e4ca73b
Show Solution

Find the excluded values
c=0,a=0
Evaluate
240b÷(c×20)÷(4e4)÷(a×7a6)
To find the excluded values,set the denominators equal to 0
c×20=0a×7a6=0
Solve the equations
More Steps

Evaluate
c×20=0
Use the commutative property to reorder the terms
20c=0
Rewrite the expression
c=0
c=0a×7a6=0
Solve the equations
More Steps

Evaluate
a×7a6=0
Multiply
More Steps

Evaluate
a×7a6
Multiply the terms with the same base by adding their exponents
a1+6×7
Add the numbers
a7×7
Use the commutative property to reorder the terms
7a7
7a7=0
Rewrite the expression
a7=0
The only way a power can be 0 is when the base equals 0
a=0
c=0a=0
Solution
c=0,a=0
Show Solution
