Question Simplify the expression 153r49 Evaluate 45245÷(r×17)Cancel out the common factor 5 949÷(r×17)Use the commutative property to reorder the terms 949÷17rMultiply by the reciprocal 949×17r1Multiply the terms 9×17r49Solution 153r49 Show Solution Find the excluded values r=0 Evaluate 45245÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 45245÷(r×17)To find the roots of the expression,set the expression equal to 0 45245÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 45245÷(r×17)=0,r=0Calculate 45245÷(r×17)=0Cancel out the common factor 5 949÷(r×17)=0Use the commutative property to reorder the terms 949÷17r=0Divide the terms More Steps Evaluate 949÷17rMultiply by the reciprocal 949×17r1Multiply the terms 9×17r49Multiply the terms 153r49 153r49=0Cross multiply 49=153r×0Simplify the equation 49=0Solution r∈∅ Show Solution