Question Simplify the expression 221r49 Evaluate 65245÷(r×17)Cancel out the common factor 5 1349÷(r×17)Use the commutative property to reorder the terms 1349÷17rMultiply by the reciprocal 1349×17r1Multiply the terms 13×17r49Solution 221r49 Show Solution Find the excluded values r=0 Evaluate 65245÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65245÷(r×17)To find the roots of the expression,set the expression equal to 0 65245÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 65245÷(r×17)=0,r=0Calculate 65245÷(r×17)=0Cancel out the common factor 5 1349÷(r×17)=0Use the commutative property to reorder the terms 1349÷17r=0Divide the terms More Steps Evaluate 1349÷17rMultiply by the reciprocal 1349×17r1Multiply the terms 13×17r49Multiply the terms 221r49 221r49=0Cross multiply 49=221r×0Simplify the equation 49=0Solution r∈∅ Show Solution