Question
Simplify the expression
50−8640000x3+8639136x4
Evaluate
5250−4x×9x(10000−1111x×9)×3x×8
Rewrite the expression in exponential form
5250−4x3×9(10000−1111x×9)×3×8
Multiply the terms
5250−4x3×9(10000−9999x)×3×8
Divide the terms
More Steps

Evaluate
5250
Reduce the numbers
150
Calculate
50
50−4x3×9(10000−9999x)×3×8
Multiply the terms
More Steps

Multiply the terms
4x3×9(10000−9999x)×3×8
Multiply the terms
More Steps

Evaluate
4×9×3×8
Multiply the terms
36×3×8
Multiply the terms
108×8
Multiply the numbers
864
864x3(10000−9999x)
50−864x3(10000−9999x)
Solution
More Steps

Evaluate
−864x3(10000−9999x)
Apply the distributive property
−864x3×10000−(−864x3×9999x)
Multiply the numbers
−8640000x3−(−864x3×9999x)
Multiply the terms
More Steps

Evaluate
−864x3×9999x
Multiply the numbers
−8639136x3×x
Multiply the terms
−8639136x4
−8640000x3−(−8639136x4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−8640000x3+8639136x4
50−8640000x3+8639136x4
Show Solution

Factor the expression
2(25−4320000x3+4319568x4)
Evaluate
5250−4x×9x(10000−1111x×9)×3x×8
Multiply the terms
5250−4x×9x(10000−9999x)×3x×8
Divide the terms
More Steps

Evaluate
5250
Reduce the numbers
150
Calculate
50
50−4x×9x(10000−9999x)×3x×8
Multiply
More Steps

Multiply the terms
4x×9x(10000−9999x)×3x×8
Multiply the terms
More Steps

Evaluate
4×9×3×8
Multiply the terms
36×3×8
Multiply the terms
108×8
Multiply the numbers
864
864x×x(10000−9999x)x
Multiply the terms with the same base by adding their exponents
864x1+1+1(10000−9999x)
Add the numbers
864x3(10000−9999x)
50−864x3(10000−9999x)
Simplify
More Steps

Evaluate
−864x3(10000−9999x)
Apply the distributive property
−864x3×10000−864x3(−9999x)
Multiply the terms
−8640000x3−864x3(−9999x)
Multiply the terms
More Steps

Evaluate
−864x3(−9999x)
Multiply the numbers
8639136x3×x
Multiply the terms
8639136x4
−8640000x3+8639136x4
50−8640000x3+8639136x4
Solution
2(25−4320000x3+4319568x4)
Show Solution

Find the roots
x1≈0.018063,x2≈1.000094
Evaluate
5250−4x×9x(10000−1111x×9)×3x×8
To find the roots of the expression,set the expression equal to 0
5250−4x×9x(10000−1111x×9)×3x×8=0
Multiply the terms
5250−4x×9x(10000−9999x)×3x×8=0
Divide the terms
More Steps

Evaluate
5250
Reduce the numbers
150
Calculate
50
50−4x×9x(10000−9999x)×3x×8=0
Multiply
More Steps

Multiply the terms
4x×9x(10000−9999x)×3x×8
Multiply the terms
More Steps

Evaluate
4×9×3×8
Multiply the terms
36×3×8
Multiply the terms
108×8
Multiply the numbers
864
864x×x(10000−9999x)x
Multiply the terms with the same base by adding their exponents
864x1+1+1(10000−9999x)
Add the numbers
864x3(10000−9999x)
50−864x3(10000−9999x)=0
Calculate
More Steps

Evaluate
−864x3(10000−9999x)
Apply the distributive property
−864x3×10000−(−864x3×9999x)
Multiply the numbers
−8640000x3−(−864x3×9999x)
Multiply the terms
More Steps

Evaluate
−864x3×9999x
Multiply the numbers
−8639136x3×x
Multiply the terms
−8639136x4
−8640000x3−(−8639136x4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−8640000x3+8639136x4
50−8640000x3+8639136x4=0
Factor the expression
2(25−4320000x3+4319568x4)=0
Divide both sides
25−4320000x3+4319568x4=0
Calculate
x≈1.000094x≈0.018063
Solution
x1≈0.018063,x2≈1.000094
Show Solution
