Question
Simplify the expression
133r217
Evaluate
35255÷(19r2×3)
Cancel out the common factor 5
751÷(19r2×3)
Multiply the terms
751÷57r2
Multiply by the reciprocal
751×57r21
Cancel out the common factor 3
717×19r21
Multiply the terms
7×19r217
Solution
133r217
Show Solution

Find the excluded values
r=0
Evaluate
35255÷(19r2×3)
To find the excluded values,set the denominators equal to 0
19r2×3=0
Multiply the terms
57r2=0
Rewrite the expression
r2=0
Solution
r=0
Show Solution

Find the roots
r∈∅
Evaluate
35255÷(19r2×3)
To find the roots of the expression,set the expression equal to 0
35255÷(19r2×3)=0
Find the domain
More Steps

Evaluate
19r2×3=0
Multiply the terms
57r2=0
Rewrite the expression
r2=0
The only way a power can not be 0 is when the base not equals 0
r=0
35255÷(19r2×3)=0,r=0
Calculate
35255÷(19r2×3)=0
Cancel out the common factor 5
751÷(19r2×3)=0
Multiply the terms
751÷57r2=0
Divide the terms
More Steps

Evaluate
751÷57r2
Multiply by the reciprocal
751×57r21
Cancel out the common factor 3
717×19r21
Multiply the terms
7×19r217
Multiply the terms
133r217
133r217=0
Cross multiply
17=133r2×0
Simplify the equation
17=0
Solution
r∈∅
Show Solution
