Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
m1=51−23,m2=51+23
Alternative Form
m1≈−0.49282,m2≈0.89282
Evaluate
25m2−10m−11=0
Substitute a=25,b=−10 and c=−11 into the quadratic formula m=2a−b±b2−4ac
m=2×2510±(−10)2−4×25(−11)
Simplify the expression
m=5010±(−10)2−4×25(−11)
Simplify the expression
More Steps

Evaluate
(−10)2−4×25(−11)
Multiply
More Steps

Multiply the terms
4×25(−11)
Rewrite the expression
−4×25×11
Multiply the terms
−1100
(−10)2−(−1100)
Rewrite the expression
102−(−1100)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+1100
Evaluate the power
100+1100
Add the numbers
1200
m=5010±1200
Simplify the radical expression
More Steps

Evaluate
1200
Write the expression as a product where the root of one of the factors can be evaluated
400×3
Write the number in exponential form with the base of 20
202×3
The root of a product is equal to the product of the roots of each factor
202×3
Reduce the index of the radical and exponent with 2
203
m=5010±203
Separate the equation into 2 possible cases
m=5010+203m=5010−203
Simplify the expression
More Steps

Evaluate
m=5010+203
Divide the terms
More Steps

Evaluate
5010+203
Rewrite the expression
5010(1+23)
Cancel out the common factor 10
51+23
m=51+23
m=51+23m=5010−203
Simplify the expression
More Steps

Evaluate
m=5010−203
Divide the terms
More Steps

Evaluate
5010−203
Rewrite the expression
5010(1−23)
Cancel out the common factor 10
51−23
m=51−23
m=51+23m=51−23
Solution
m1=51−23,m2=51+23
Alternative Form
m1≈−0.49282,m2≈0.89282
Show Solution
