Question
Simplify the expression
25x2−51728x3
Evaluate
25x2−1516x2×27x×12
Solution
More Steps

Evaluate
1516x2×27x×12
Multiply the terms
More Steps

Evaluate
1516×27×12
Multiply the terms
5144×12
Multiply the numbers
5144×12
Multiply the numbers
51728
51728x2×x
Multiply the terms with the same base by adding their exponents
51728x2+1
Add the numbers
51728x3
25x2−51728x3
Show Solution

Factor the expression
51x2(125−1728x)
Evaluate
25x2−1516x2×27x×12
Multiply
More Steps

Evaluate
1516x2×27x×12
Multiply the terms
More Steps

Evaluate
1516×27×12
Multiply the terms
5144×12
Multiply the numbers
5144×12
Multiply the numbers
51728
51728x2×x
Multiply the terms with the same base by adding their exponents
51728x2+1
Add the numbers
51728x3
25x2−51728x3
Rewrite the expression
51x2×125−51x2×1728x
Solution
51x2(125−1728x)
Show Solution

Find the roots
x1=0,x2=1728125
Alternative Form
x1=0,x2≈0.072338
Evaluate
25x2−1516x2×27x×12
To find the roots of the expression,set the expression equal to 0
25x2−1516x2×27x×12=0
Multiply
More Steps

Multiply the terms
1516x2×27x×12
Multiply the terms
More Steps

Evaluate
1516×27×12
Multiply the terms
5144×12
Multiply the numbers
5144×12
Multiply the numbers
51728
51728x2×x
Multiply the terms with the same base by adding their exponents
51728x2+1
Add the numbers
51728x3
25x2−51728x3=0
Factor the expression
x2(25−51728x)=0
Separate the equation into 2 possible cases
x2=025−51728x=0
The only way a power can be 0 is when the base equals 0
x=025−51728x=0
Solve the equation
More Steps

Evaluate
25−51728x=0
Move the constant to the right-hand side and change its sign
−51728x=0−25
Removing 0 doesn't change the value,so remove it from the expression
−51728x=−25
Change the signs on both sides of the equation
51728x=25
Multiply by the reciprocal
51728x×17285=25×17285
Multiply
x=25×17285
Multiply
More Steps

Evaluate
25×17285
Multiply the numbers
172825×5
Multiply the numbers
1728125
x=1728125
x=0x=1728125
Solution
x1=0,x2=1728125
Alternative Form
x1=0,x2≈0.072338
Show Solution
