Question
Simplify the expression
53150x3+3159000000x7
Evaluate
25x3×2126+9918810×9x×125x×1625x×12x4
Rewrite the expression in exponential form
25x3×2126+9918810×9x3×125×1625×12x4
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
9918810
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
1899×18+810
Multiply the terms
181782+810
Add the terms
182592
25x3×2126+182592×9x3×125×1625×12x4
Multiply the terms
53150x3+182592×9x3×125×1625×12x4
Solution
More Steps

Multiply the terms
182592×9x3×125×1625×12x4
Multiply the terms
More Steps

Evaluate
182592×9×125×1625×12
Multiply the terms
1296×125×1625×12
Multiply the terms
162000×1625×12
Multiply the terms
263250000×12
Multiply the numbers
3159000000
3159000000x3×x4
Multiply the terms with the same base by adding their exponents
3159000000x3+4
Add the numbers
3159000000x7
53150x3+3159000000x7
Show Solution

Factor the expression
50x3(1063+63180000x4)
Evaluate
25x3×2126+9918810×9x×125x×1625x×12x4
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
9918810
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
1899×18+810
Multiply the terms
181782+810
Add the terms
182592
25x3×2126+182592×9x×125x×1625x×12x4
Multiply the terms
53150x3+182592×9x×125x×1625x×12x4
Multiply
More Steps

Multiply the terms
182592×9x×125x×1625x×12x4
Multiply the terms
More Steps

Evaluate
182592×9×125×1625×12
Multiply the terms
1296×125×1625×12
Multiply the terms
162000×1625×12
Multiply the terms
263250000×12
Multiply the numbers
3159000000
3159000000x×x×x×x4
Multiply the terms with the same base by adding their exponents
3159000000x1+4×x×x
Add the numbers
3159000000x5×x×x
Multiply the terms with the same base by adding their exponents
3159000000x1+5+1
Add the numbers
3159000000x7
53150x3+3159000000x7
Rewrite the expression
50x3×1063+50x3×63180000x4
Solution
50x3(1063+63180000x4)
Show Solution

Find the roots
x1=−23404126112194−23404126112194i,x2=23404126112194+23404126112194i,x3=0
Alternative Form
x1≈−0.045287−0.045287i,x2≈0.045287+0.045287i,x3=0
Evaluate
25x3×2126+9918810×9x×125x×1625x(12x4)
To find the roots of the expression,set the expression equal to 0
25x3×2126+9918810×9x×125x×1625x(12x4)=0
Multiply the terms
25x3×2126+9918810×9x×125x×1625x×12x4=0
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
9918810
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
1899×18+810
Multiply the terms
181782+810
Add the terms
182592
25x3×2126+182592×9x×125x×1625x×12x4=0
Multiply the terms
53150x3+182592×9x×125x×1625x×12x4=0
Multiply
More Steps

Multiply the terms
182592×9x×125x×1625x×12x4
Multiply the terms
More Steps

Evaluate
182592×9×125×1625×12
Multiply the terms
1296×125×1625×12
Multiply the terms
162000×1625×12
Multiply the terms
263250000×12
Multiply the numbers
3159000000
3159000000x×x×x×x4
Multiply the terms with the same base by adding their exponents
3159000000x1+4×x×x
Add the numbers
3159000000x5×x×x
Multiply the terms with the same base by adding their exponents
3159000000x1+5+1
Add the numbers
3159000000x7
53150x3+3159000000x7=0
Factor the expression
50x3(1063+63180000x4)=0
Divide both sides
x3(1063+63180000x4)=0
Separate the equation into 2 possible cases
x3=01063+63180000x4=0
The only way a power can be 0 is when the base equals 0
x=01063+63180000x4=0
Solve the equation
More Steps

Evaluate
1063+63180000x4=0
Move the constant to the right-hand side and change its sign
63180000x4=0−1063
Removing 0 doesn't change the value,so remove it from the expression
63180000x4=−1063
Divide both sides
6318000063180000x4=63180000−1063
Divide the numbers
x4=63180000−1063
Use b−a=−ba=−ba to rewrite the fraction
x4=−631800001063
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−631800001063
Simplify the expression
More Steps

Evaluate
4−631800001063
To take a root of a fraction,take the root of the numerator and denominator separately
4631800004−1063
Simplify the radical expression
463180000244252+244252i
Simplify the radical expression
30478244252+244252i
Simplify
6043942126+6043942126i
Rearrange the numbers
23404126112194+6043942126i
Rearrange the numbers
23404126112194+23404126112194i
x=±(23404126112194+23404126112194i)
Separate the equation into 2 possible cases
x=23404126112194+23404126112194ix=−23404126112194−23404126112194i
x=0x=23404126112194+23404126112194ix=−23404126112194−23404126112194i
Solution
x1=−23404126112194−23404126112194i,x2=23404126112194+23404126112194i,x3=0
Alternative Form
x1≈−0.045287−0.045287i,x2≈0.045287+0.045287i,x3=0
Show Solution
