Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
y1=2549−32689,y2=2549+32689
Alternative Form
y1≈−4.262668,y2≈8.182668
Evaluate
25y2−98y−872=0
Substitute a=25,b=−98 and c=−872 into the quadratic formula y=2a−b±b2−4ac
y=2×2598±(−98)2−4×25(−872)
Simplify the expression
y=5098±(−98)2−4×25(−872)
Simplify the expression
More Steps

Evaluate
(−98)2−4×25(−872)
Multiply
More Steps

Multiply the terms
4×25(−872)
Rewrite the expression
−4×25×872
Multiply the terms
−87200
(−98)2−(−87200)
Rewrite the expression
982−(−87200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
982+87200
Evaluate the power
9604+87200
Add the numbers
96804
y=5098±96804
Simplify the radical expression
More Steps

Evaluate
96804
Write the expression as a product where the root of one of the factors can be evaluated
36×2689
Write the number in exponential form with the base of 6
62×2689
The root of a product is equal to the product of the roots of each factor
62×2689
Reduce the index of the radical and exponent with 2
62689
y=5098±62689
Separate the equation into 2 possible cases
y=5098+62689y=5098−62689
Simplify the expression
More Steps

Evaluate
y=5098+62689
Divide the terms
More Steps

Evaluate
5098+62689
Rewrite the expression
502(49+32689)
Cancel out the common factor 2
2549+32689
y=2549+32689
y=2549+32689y=5098−62689
Simplify the expression
More Steps

Evaluate
y=5098−62689
Divide the terms
More Steps

Evaluate
5098−62689
Rewrite the expression
502(49−32689)
Cancel out the common factor 2
2549−32689
y=2549−32689
y=2549+32689y=2549−32689
Solution
y1=2549−32689,y2=2549+32689
Alternative Form
y1≈−4.262668,y2≈8.182668
Show Solution
