Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=613−181,x2=613+181
Alternative Form
x1≈−0.075604,x2≈4.408937
Evaluate
26x=2×3x2−2
Multiply the numbers
26x=6x2−2
Swap the sides
6x2−2=26x
Move the expression to the left side
6x2−2−26x=0
Rewrite in standard form
6x2−26x−2=0
Substitute a=6,b=−26 and c=−2 into the quadratic formula x=2a−b±b2−4ac
x=2×626±(−26)2−4×6(−2)
Simplify the expression
x=1226±(−26)2−4×6(−2)
Simplify the expression
More Steps

Evaluate
(−26)2−4×6(−2)
Multiply
More Steps

Multiply the terms
4×6(−2)
Rewrite the expression
−4×6×2
Multiply the terms
−48
(−26)2−(−48)
Rewrite the expression
262−(−48)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
262+48
Evaluate the power
676+48
Add the numbers
724
x=1226±724
Simplify the radical expression
More Steps

Evaluate
724
Write the expression as a product where the root of one of the factors can be evaluated
4×181
Write the number in exponential form with the base of 2
22×181
The root of a product is equal to the product of the roots of each factor
22×181
Reduce the index of the radical and exponent with 2
2181
x=1226±2181
Separate the equation into 2 possible cases
x=1226+2181x=1226−2181
Simplify the expression
More Steps

Evaluate
x=1226+2181
Divide the terms
More Steps

Evaluate
1226+2181
Rewrite the expression
122(13+181)
Cancel out the common factor 2
613+181
x=613+181
x=613+181x=1226−2181
Simplify the expression
More Steps

Evaluate
x=1226−2181
Divide the terms
More Steps

Evaluate
1226−2181
Rewrite the expression
122(13−181)
Cancel out the common factor 2
613−181
x=613−181
x=613+181x=613−181
Solution
x1=613−181,x2=613+181
Alternative Form
x1≈−0.075604,x2≈4.408937
Show Solution
