Question Simplify the expression 45r11 Evaluate 75275÷(r×15)Cancel out the common factor 25 311÷(r×15)Use the commutative property to reorder the terms 311÷15rMultiply by the reciprocal 311×15r1Multiply the terms 3×15r11Solution 45r11 Show Solution Find the excluded values r=0 Evaluate 75275÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 75275÷(r×15)To find the roots of the expression,set the expression equal to 0 75275÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 75275÷(r×15)=0,r=0Calculate 75275÷(r×15)=0Cancel out the common factor 25 311÷(r×15)=0Use the commutative property to reorder the terms 311÷15r=0Divide the terms More Steps Evaluate 311÷15rMultiply by the reciprocal 311×15r1Multiply the terms 3×15r11Multiply the terms 45r11 45r11=0Cross multiply 11=45r×0Simplify the equation 11=0Solution r∈∅ Show Solution