Question
Simplify the expression
−2+3x314
Evaluate
−2(11−9)−3x3×228
Subtract the numbers
−2×2−3x3×228
Multiply the numbers
−4−3x3×228
Multiply the numbers
−4−6x328
Use b−a=−ba=−ba to rewrite the fraction
−4+6x328
Rewrite the fraction
−2(2+3x3)28
Solution
−2+3x314
Show Solution

Find the excluded values
x=−3318
Evaluate
−2(11−9)−(3x3)×228
To find the excluded values,set the denominators equal to 0
−2(11−9)−(3x3)×2=0
Solution
More Steps

Evaluate
−2(11−9)−3x3×2=0
Simplify
More Steps

Evaluate
−2(11−9)−3x3×2
Subtract the numbers
−2×2−3x3×2
Multiply the numbers
−4−3x3×2
Multiply the numbers
−4−6x3
−4−6x3=0
Move the constant to the right-hand side and change its sign
−6x3=0+4
Removing 0 doesn't change the value,so remove it from the expression
−6x3=4
Change the signs on both sides of the equation
6x3=−4
Divide both sides
66x3=6−4
Divide the numbers
x3=6−4
Divide the numbers
More Steps

Evaluate
6−4
Cancel out the common factor 2
3−2
Use b−a=−ba=−ba to rewrite the fraction
−32
x3=−32
Take the 3-th root on both sides of the equation
3x3=3−32
Calculate
x=3−32
Simplify the root
More Steps

Evaluate
3−32
An odd root of a negative radicand is always a negative
−332
To take a root of a fraction,take the root of the numerator and denominator separately
−3332
Multiply by the Conjugate
33×332−32×332
Simplify
33×332−32×39
Multiply the numbers
33×332−318
Multiply the numbers
3−318
Calculate
−3318
x=−3318
x=−3318
Show Solution

Find the roots
x∈∅
Evaluate
−2(11−9)−(3x3)×228
To find the roots of the expression,set the expression equal to 0
−2(11−9)−(3x3)×228=0
Find the domain
More Steps

Evaluate
{−2(11−9)−3x3×2=0−2(11−9)−(3x3)×2=0
Calculate
More Steps

Evaluate
−2(11−9)−3x3×2=0
Simplify
−4−6x3=0
Rewrite the expression
−6x3=4
Change the signs on both sides of the equation
6x3=−4
Divide both sides
66x3=6−4
Divide the numbers
x3=6−4
Divide the numbers
x3=−32
Take the 3-th root on both sides of the equation
3x3=3−32
Calculate
x=3−32
Simplify the root
x=−3318
{x=−3318−2(11−9)−(3x3)×2=0
Calculate
More Steps

Evaluate
−2(11−9)−3x3×2=0
Simplify
−4−6x3=0
Rewrite the expression
−6x3=4
Change the signs on both sides of the equation
6x3=−4
Divide both sides
66x3=6−4
Divide the numbers
x3=6−4
Divide the numbers
x3=−32
Take the 3-th root on both sides of the equation
3x3=3−32
Calculate
x=3−32
Simplify the root
x=−3318
{x=−3318x=−3318
Find the intersection
x=−3318
−2(11−9)−(3x3)×228=0,x=−3318
Calculate
−2(11−9)−(3x3)×228=0
Subtract the numbers
−2×2−(3x3)×228=0
Multiply the terms
−2×2−3x3×228=0
Multiply the numbers
−4−3x3×228=0
Multiply the numbers
−4−6x328=0
Divide the terms
More Steps

Evaluate
−4−6x328
Use b−a=−ba=−ba to rewrite the fraction
−4+6x328
Rewrite the fraction
−2(2+3x3)28
Reduce the fraction
−2+3x314
−2+3x314=0
Rewrite the expression
2+3x3−14=0
Cross multiply
−14=(2+3x3)×0
Simplify the equation
−14=0
Solution
x∈∅
Show Solution
