Question
Solve the equation
r1=−58362917×5835,r2=0,r3=58362917×5835
Alternative Form
r1≈−1.30781,r2=0,r3≈1.30781
Evaluate
2917r=583r2×r5
Multiply
More Steps

Evaluate
583r2×r5
Multiply the terms with the same base by adding their exponents
583r2+5
Add the numbers
583r7
2917r=583r7
Add or subtract both sides
2917r−583r7=0
Factor the expression
r(2917−583r6)=0
Separate the equation into 2 possible cases
r=02917−583r6=0
Solve the equation
More Steps

Evaluate
2917−583r6=0
Move the constant to the right-hand side and change its sign
−583r6=0−2917
Removing 0 doesn't change the value,so remove it from the expression
−583r6=−2917
Change the signs on both sides of the equation
583r6=2917
Divide both sides
583583r6=5832917
Divide the numbers
r6=5832917
Take the root of both sides of the equation and remember to use both positive and negative roots
r=±65832917
Simplify the expression
More Steps

Evaluate
65832917
To take a root of a fraction,take the root of the numerator and denominator separately
658362917
Multiply by the Conjugate
6583×6583562917×65835
The product of roots with the same index is equal to the root of the product
6583×6583562917×5835
Multiply the numbers
58362917×5835
r=±58362917×5835
Separate the equation into 2 possible cases
r=58362917×5835r=−58362917×5835
r=0r=58362917×5835r=−58362917×5835
Solution
r1=−58362917×5835,r2=0,r3=58362917×5835
Alternative Form
r1≈−1.30781,r2=0,r3≈1.30781
Show Solution

Rewrite the equation
5832x14+5832x12y2+2039334x12y2+4078668x10y4+8837114x8y6+8837114x6y8−3401222x8−13604888x6y2+17492x10y4+17492x8y6+4078668x4y10−20407332x4y4+17492x6y8+17492x4y10+2039334x2y12−13604888x2y6+5832y12x2+5832y14−3401222y8+29172x2+29172y2=0
Evaluate
2917r=583r2×r5
Evaluate
More Steps

Evaluate
583r2×r5
Multiply the terms with the same base by adding their exponents
583r2+5
Add the numbers
583r7
2917r=583r7
Rewrite the expression
2917r−583r7=0
Evaluate
(−583r6+2917)r=0
Evaluate
(−583x6−1749x4y2−1749x2y4−583y6+2917)r=0
Square both sides of the equation
((−583x6−1749x4y2−1749x2y4−583y6+2917)r)2=0
Evaluate
(−583x6−1749x4y2−1749x2y4−583y6+2917)2r2=0
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
(−583x6−1749x4y2−1749x2y4−583y6+2917)2(x2+y2)=0
Solution
5832x14+5832x12y2+2039334x12y2+4078668x10y4+8837114x8y6+8837114x6y8−3401222x8−13604888x6y2+17492x10y4+17492x8y6+4078668x4y10−20407332x4y4+17492x6y8+17492x4y10+2039334x2y12−13604888x2y6+5832y12x2+5832y14−3401222y8+29172x2+29172y2=0
Show Solution
