Question
Simplify the expression
612a2−82a−375b2−96
Evaluate
2a2−341a−62b2−(4×8b)b−16
Remove the parentheses
2a2−341a−62b2−4×8bb−16
Multiply the terms
More Steps

Multiply the terms
−4×8bb
Multiply the terms
More Steps

Evaluate
4×8bb
Multiply the terms
2bb
Multiply the terms
2b×b
Multiply the terms
2b2
−2b2
2a2−341a−62b2−2b2−16
Rewrite the expression
2a2−341a−62b2−2b2−16
Reduce fractions to a common denominator
3×22a2×3×2−3×241a×2−3×262b2×3×2−2×3b2×3−3×216×3×2
Multiply the numbers
62a2×3×2−3×241a×2−3×262b2×3×2−2×3b2×3−3×216×3×2
Multiply the numbers
62a2×3×2−641a×2−3×262b2×3×2−2×3b2×3−3×216×3×2
Multiply the numbers
62a2×3×2−641a×2−662b2×3×2−2×3b2×3−3×216×3×2
Multiply the numbers
62a2×3×2−641a×2−662b2×3×2−6b2×3−3×216×3×2
Multiply the numbers
62a2×3×2−641a×2−662b2×3×2−6b2×3−616×3×2
Write all numerators above the common denominator
62a2×3×2−41a×2−62b2×3×2−b2×3−16×3×2
Multiply the terms
More Steps

Evaluate
2a2×3×2
Multiply the terms
6a2×2
Multiply the terms
12a2
612a2−41a×2−62b2×3×2−b2×3−16×3×2
Multiply the terms
612a2−82a−62b2×3×2−b2×3−16×3×2
Multiply the terms
More Steps

Evaluate
62b2×3×2
Multiply the terms
186b2×2
Multiply the terms
372b2
612a2−82a−372b2−b2×3−16×3×2
Use the commutative property to reorder the terms
612a2−82a−372b2−3b2−16×3×2
Multiply the terms
More Steps

Evaluate
16×3×2
Multiply the terms
48×2
Multiply the numbers
96
612a2−82a−372b2−3b2−96
Solution
More Steps

Evaluate
−372b2−3b2
Collect like terms by calculating the sum or difference of their coefficients
(−372−3)b2
Subtract the numbers
−375b2
612a2−82a−375b2−96
Show Solution
