Question
Simplify the expression
72144a3−a3b3−8b4
Evaluate
2a3−a2×36b×2b2a−9bb3
Multiply
More Steps

Multiply the terms
−a2×36b×2b2a
Multiply the terms with the same base by adding their exponents
−a2+1×36b×2b2
Add the numbers
−a3×36b×2b2
Multiply the terms
More Steps

Evaluate
a3×36b×2b2
Multiply the terms
36a3b×2b2
Multiply the terms
36×2a3b×b2
Multiply the terms
36×2a3b3
Multiply the terms
72a3b3
−72a3b3
2a3−72a3b3−9bb3
Multiply the terms
More Steps

Multiply the terms
−9bb3
Multiply the terms
−9b×b3
Multiply the terms
More Steps

Evaluate
b×b3
Use the product rule an×am=an+m to simplify the expression
b1+3
Add the numbers
b4
−9b4
2a3−72a3b3−9b4
Reduce fractions to a common denominator
722a3×72−72a3b3−9×8b4×8
Multiply the numbers
722a3×72−72a3b3−72b4×8
Write all numerators above the common denominator
722a3×72−a3b3−b4×8
Multiply the terms
72144a3−a3b3−b4×8
Solution
72144a3−a3b3−8b4
Show Solution
