Question
Simplify the expression
38a5
Evaluate
(2×6a4)×23a
Remove the parentheses
2×6a4×23a
Multiply the terms with the same base by adding their exponents
21+3×6a4a
Add the numbers
24×6a4a
Multiply the terms
More Steps

Multiply the terms
24×6a4
Rewrite the expression
24×2×3a4
Cancel out the common factor 2
23×3a4
Multiply the terms
323a4
323a4a
Multiply the terms
323a4×a
Solution
More Steps

Evaluate
23a4×a
Evaluate the power
8a4×a
Multiply the terms
More Steps

Evaluate
a4×a
Use the product rule an×am=an+m to simplify the expression
a4+1
Add the numbers
a5
8a5
38a5
Show Solution

Find the roots
a=0
Evaluate
(2×6a4)×23a
To find the roots of the expression,set the expression equal to 0
(2×6a4)×23a=0
Multiply the terms
More Steps

Multiply the terms
2×6a4
Cancel out the common factor 2
1×3a4
Multiply the terms
3a4
3a4×23a=0
Multiply the terms
More Steps

Multiply the terms
3a4×23a
Multiply the terms
More Steps

Multiply the terms
3a4×23
Multiply the terms
3a4×23
Use the commutative property to reorder the terms
323a4
323a4a
Multiply the terms
323a4×a
Multiply the terms
More Steps

Evaluate
23a4×a
Evaluate the power
8a4×a
Multiply the terms
8a5
38a5
38a5=0
Simplify
8a5=0
Rewrite the expression
a5=0
Solution
a=0
Show Solution
