Question
Simplify the expression
−150e+60ef−6ef2
Evaluate
2e(5−f)×3(f−5)
Multiply the terms
6e(5−f)(f−5)
Multiply the terms
6e(−(5−f)2)
Use the commutative property to reorder the terms
e(−6)(5−f)2
Use the commutative property to reorder the terms
−6e(5−f)2
Expand the expression
More Steps

Evaluate
(5−f)2
Use (a−b)2=a2−2ab+b2 to expand the expression
52−2×5f+f2
Calculate
25−10f+f2
−6e(25−10f+f2)
Apply the distributive property
−6e×25−(−6e×10f)−6ef2
Multiply the terms
−150e−(−6e×10f)−6ef2
Multiply the numbers
−150e−(−60ef)−6ef2
Solution
−150e+60ef−6ef2
Show Solution

Find the roots
f=5
Evaluate
2e(5−f)×3(f−5)
To find the roots of the expression,set the expression equal to 0
2e(5−f)×3(f−5)=0
Multiply the terms
More Steps

Multiply the terms
2e(5−f)×3(f−5)
Multiply the terms
6e(5−f)(f−5)
Multiply the terms
6e(−(5−f)2)
Use the commutative property to reorder the terms
e(−6)(5−f)2
Use the commutative property to reorder the terms
−6e(5−f)2
−6e(5−f)2=0
Change the sign
6e(5−f)2=0
Rewrite the expression
(5−f)2=0
The only way a power can be 0 is when the base equals 0
5−f=0
Move the constant to the right-hand side and change its sign
−f=0−5
Removing 0 doesn't change the value,so remove it from the expression
−f=−5
Solution
f=5
Show Solution
