To find the roots of the expression,set the expression equal to 0
2k3−k2−2k×1=0
Multiply the terms
2k3−k2−2k=0
Factor the expression
k(2k2−k−2)=0
Separate the equation into 2 possible cases
k=02k2−k−2=0
Solve the equation
More Steps
Evaluate
2k2−k−2=0
Substitute a=2,b=−1 and c=−2 into the quadratic formula k=2a−b±b2−4ac
k=2×21±(−1)2−4×2(−2)
Simplify the expression
k=41±(−1)2−4×2(−2)
Simplify the expression
More Steps
Evaluate
(−1)2−4×2(−2)
Evaluate the power
1−4×2(−2)
Multiply
1−(−16)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses