Question
Solve the inequality
x≥24300010
Alternative Form
x∈[24300010,+∞)
Evaluate
2log10(3x)−4log10(x×27)≤5
Find the domain
More Steps

Evaluate
{3x>0x×27>0
Calculate
{x>0x×27>0
Calculate
More Steps

Evaluate
x×27>0
Use the commutative property to reorder the terms
27x>0
Rewrite the expression
x>0
{x>0x>0
Find the intersection
x>0
2log10(3x)−4log10(x×27)≤5,x>0
Simplify
More Steps

Evaluate
2log10(3x)−4log10(x×27)
Use the commutative property to reorder the terms
2log10(3x)−4log10(27x)
Rewrite the expression
log10(3x)×2−2log10(27x)×2
Factor the expression
(log10(3x)−2log10(27x))×2
Add the terms
More Steps

Evaluate
log10(3x)−2log10(27x)
Use the logarithm base change rule
log10(3x)−log10((27x)2)
Use logax−logay=logayx to transform the expression
log10((27x)23x)
Divide the terms
log10(243x1)
log10(243x1)×2
Multiply the terms
2log10(243x1)
2log10(243x1)≤5
Divide both sides
22log10(243x1)≤25
Divide the numbers
log10(243x1)≤25
For 10>1 the expression log10(243x1)≤25 is equivalent to 243x1≤1025
243x1≤1025
Evaluate the power
243x1≤10010
Calculate
243x1−10010≤0
Calculate
More Steps

Calculate
243x1−10010
Reduce fractions to a common denominator
243x1−243x10010×243x
Write all numerators above the common denominator
243x1−10010×243x
Multiply the terms
243x1−2430010×x
243x1−2430010×x≤0
Separate the inequality into 2 possible cases
{1−2430010×x≥0243x<0{1−2430010×x≤0243x>0
Solve the inequality
More Steps

Evaluate
1−2430010×x≥0
Move the constant to the right side
−2430010×x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−2430010×x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
2430010×x≤1
Divide both sides
24300102430010×x≤24300101
Divide the numbers
x≤24300101
Rearrange the numbers
More Steps

Evaluate
24300101
Multiply by the Conjugate
2430010×1010
Multiply the numbers
24300010
x≤24300010
{x≤24300010243x<0{1−2430010×x≤0243x>0
Solve the inequality
{x≤24300010x<0{1−2430010×x≤0243x>0
Solve the inequality
More Steps

Evaluate
1−2430010×x≤0
Move the constant to the right side
−2430010×x≤0−1
Removing 0 doesn't change the value,so remove it from the expression
−2430010×x≤−1
Change the signs on both sides of the inequality and flip the inequality sign
2430010×x≥1
Divide both sides
24300102430010×x≥24300101
Divide the numbers
x≥24300101
Rearrange the numbers
More Steps

Evaluate
24300101
Multiply by the Conjugate
2430010×1010
Multiply the numbers
24300010
x≥24300010
{x≤24300010x<0{x≥24300010243x>0
Solve the inequality
{x≤24300010x<0{x≥24300010x>0
Find the intersection
x<0{x≥24300010x>0
Find the intersection
x<0x≥24300010
Find the union
x∈(−∞,0)∪[24300010,+∞)
Check if the solution is in the defined range
x∈(−∞,0)∪[24300010,+∞),x>0
Solution
x≥24300010
Alternative Form
x∈[24300010,+∞)
Show Solution
