Question
Solve the equation
a=1
Evaluate
2log10(a)×(a3×a)=log10(a)×(a−30)
Find the domain
2log10(a)×(a3×a)=log10(a)×(a−30),a>0
Remove the parentheses
2log10(a)×a3×a=log10(a)×(a−30)
Multiply
More Steps

Evaluate
2log10(a)×a3×a
Multiply the terms with the same base by adding their exponents
2log10(a)×a3+1
Add the numbers
2log10(a)×a4
2log10(a)×a4=log10(a)×(a−30)
Multiply the terms
2log10(a)×a4=(a−30)×log10(a)
Calculate
2log10(a)×a4=alog10(a)−30log10(a)
Move the expression to the left side
2log10(a)×a4−(alog10(a)−30log10(a))=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2log10(a)×a4−alog10(a)+30log10(a)=0
Factor the expression
log10(a)×(2a4−a+30)=0
Separate the equation into 2 possible cases
log10(a)=02a4−a+30=0
Solve the equation
More Steps

Evaluate
log10(a)=0
Convert the logarithm into exponential form using the fact that logax=b is equal to x=ab
a=100
Evaluate the power
a=1
a=12a4−a+30=0
Solve the equation
a=1a∈/R
Find the union
a=1
Check if the solution is in the defined range
a=1,a>0
Solution
a=1
Show Solution
