Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
m∈(−∞,−2238)∪(0,2238)
Evaluate
2m3−11m<12m×9
Multiply the terms
2m3−11m<108m
Move the expression to the left side
2m3−11m−108m<0
Subtract the terms
More Steps

Evaluate
−11m−108m
Collect like terms by calculating the sum or difference of their coefficients
(−11−108)m
Subtract the numbers
−119m
2m3−119m<0
Rewrite the expression
2m3−119m=0
Factor the expression
m(2m2−119)=0
Separate the equation into 2 possible cases
m=02m2−119=0
Solve the equation
More Steps

Evaluate
2m2−119=0
Move the constant to the right-hand side and change its sign
2m2=0+119
Removing 0 doesn't change the value,so remove it from the expression
2m2=119
Divide both sides
22m2=2119
Divide the numbers
m2=2119
Take the root of both sides of the equation and remember to use both positive and negative roots
m=±2119
Simplify the expression
More Steps

Evaluate
2119
To take a root of a fraction,take the root of the numerator and denominator separately
2119
Multiply by the Conjugate
2×2119×2
Multiply the numbers
2×2238
When a square root of an expression is multiplied by itself,the result is that expression
2238
m=±2238
Separate the equation into 2 possible cases
m=2238m=−2238
m=0m=2238m=−2238
Determine the test intervals using the critical values
m<−2238−2238<m<00<m<2238m>2238
Choose a value form each interval
m1=−9m2=−4m3=4m4=9
To determine if m<−2238 is the solution to the inequality,test if the chosen value m=−9 satisfies the initial inequality
More Steps

Evaluate
2(−9)3−11(−9)<108(−9)
Simplify
More Steps

Evaluate
2(−9)3−11(−9)
Multiply the terms
−1458−11(−9)
Multiply the numbers
−1458−(−99)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−1458+99
Add the numbers
−1359
−1359<108(−9)
Multiply the numbers
More Steps

Evaluate
108(−9)
Multiplying or dividing an odd number of negative terms equals a negative
−108×9
Multiply the numbers
−972
−1359<−972
Check the inequality
true
m<−2238 is the solutionm2=−4m3=4m4=9
To determine if −2238<m<0 is the solution to the inequality,test if the chosen value m=−4 satisfies the initial inequality
More Steps

Evaluate
2(−4)3−11(−4)<108(−4)
Simplify
More Steps

Evaluate
2(−4)3−11(−4)
Multiply the terms
−128−11(−4)
Multiply the numbers
−128−(−44)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−128+44
Add the numbers
−84
−84<108(−4)
Multiply the numbers
More Steps

Evaluate
108(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−108×4
Multiply the numbers
−432
−84<−432
Check the inequality
false
m<−2238 is the solution−2238<m<0 is not a solutionm3=4m4=9
To determine if 0<m<2238 is the solution to the inequality,test if the chosen value m=4 satisfies the initial inequality
More Steps

Evaluate
2×43−11×4<108×4
Simplify
More Steps

Evaluate
2×43−11×4
Multiply the terms
128−11×4
Multiply the numbers
128−44
Subtract the numbers
84
84<108×4
Multiply the numbers
84<432
Check the inequality
true
m<−2238 is the solution−2238<m<0 is not a solution0<m<2238 is the solutionm4=9
To determine if m>2238 is the solution to the inequality,test if the chosen value m=9 satisfies the initial inequality
More Steps

Evaluate
2×93−11×9<108×9
Simplify
More Steps

Evaluate
2×93−11×9
Multiply the terms
1458−11×9
Multiply the numbers
1458−99
Subtract the numbers
1359
1359<108×9
Multiply the numbers
1359<972
Check the inequality
false
m<−2238 is the solution−2238<m<0 is not a solution0<m<2238 is the solutionm>2238 is not a solution
Solution
m∈(−∞,−2238)∪(0,2238)
Show Solution
