Question
Simplify the expression
6x2−8x2y2+48xy3
Evaluate
2x(3x−4y(−5xy−3(y−x)×2y))
Multiply
More Steps

Multiply the terms
3(y−x)×2y
Multiply the terms
6(y−x)y
Multiply the terms
6y(y−x)
2x(3x−4y(−5xy−6y(y−x)))
Subtract the terms
More Steps

Simplify
−5xy−6y(y−x)
Expand the expression
More Steps

Calculate
−6y(y−x)
Apply the distributive property
−6y×y−(−6yx)
Multiply the terms
−6y2−(−6yx)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6y2+6yx
−5xy−6y2+6yx
Add the terms
More Steps

Evaluate
−5xy+6yx
Rewrite the expression
−5xy+6xy
Collect like terms by calculating the sum or difference of their coefficients
(−5+6)xy
Add the numbers
xy
xy−6y2
2x(3x−4y(xy−6y2))
Expand the expression
More Steps

Simplify
3x−4y(xy−6y2)
Expand the expression
More Steps

Evaluate
−4y(xy−6y2)
Apply the distributive property
−4yxy−(−4y×6y2)
Multiply the terms
−4y2x−(−4y×6y2)
Multiply the terms
−4y2x−(−24y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4y2x+24y3
3x−4y2x+24y3
2x(3x−4y2x+24y3)
Apply the distributive property
2x×3x−2x×4y2x+2x×24y3
Multiply the terms
More Steps

Evaluate
2x×3x
Multiply the numbers
6x×x
Multiply the terms
6x2
6x2−2x×4y2x+2x×24y3
Multiply the terms
More Steps

Evaluate
2x×4y2x
Multiply the numbers
8xy2x
Multiply the terms
8x2y2
6x2−8x2y2+2x×24y3
Solution
6x2−8x2y2+48xy3
Show Solution
