Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
2x−105x2×3=48
Multiply the terms
2x−315x2=48
Move the expression to the left side
2x−315x2−48=0
Rewrite in standard form
−315x2+2x−48=0
Multiply both sides
315x2−2x+48=0
Substitute a=315,b=−2 and c=48 into the quadratic formula x=2a−b±b2−4ac
x=2×3152±(−2)2−4×315×48
Simplify the expression
x=6302±(−2)2−4×315×48
Simplify the expression
More Steps

Evaluate
(−2)2−4×315×48
Multiply the terms
More Steps

Multiply the terms
4×315×48
Multiply the terms
1260×48
Multiply the numbers
60480
(−2)2−60480
Rewrite the expression
22−60480
Evaluate the power
4−60480
Subtract the numbers
−60476
x=6302±−60476
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=3151−31515119i,x2=3151+31515119i
Alternative Form
x1≈0.00˙31746˙−0.390347i,x2≈0.00˙31746˙+0.390347i
Evaluate
2x−105x2×3=48
Multiply the terms
2x−315x2=48
Move the expression to the left side
2x−315x2−48=0
Rewrite in standard form
−315x2+2x−48=0
Multiply both sides
315x2−2x+48=0
Substitute a=315,b=−2 and c=48 into the quadratic formula x=2a−b±b2−4ac
x=2×3152±(−2)2−4×315×48
Simplify the expression
x=6302±(−2)2−4×315×48
Simplify the expression
More Steps

Evaluate
(−2)2−4×315×48
Multiply the terms
More Steps

Multiply the terms
4×315×48
Multiply the terms
1260×48
Multiply the numbers
60480
(−2)2−60480
Rewrite the expression
22−60480
Evaluate the power
4−60480
Subtract the numbers
−60476
x=6302±−60476
Simplify the radical expression
More Steps

Evaluate
−60476
Evaluate the power
60476×−1
Evaluate the power
60476×i
Evaluate the power
More Steps

Evaluate
60476
Write the expression as a product where the root of one of the factors can be evaluated
4×15119
Write the number in exponential form with the base of 2
22×15119
The root of a product is equal to the product of the roots of each factor
22×15119
Reduce the index of the radical and exponent with 2
215119
215119×i
x=6302±215119×i
Separate the equation into 2 possible cases
x=6302+215119×ix=6302−215119×i
Simplify the expression
More Steps

Evaluate
x=6302+215119×i
Divide the terms
More Steps

Evaluate
6302+215119×i
Rewrite the expression
6302(1+15119×i)
Cancel out the common factor 2
3151+15119×i
Simplify
3151+31515119i
x=3151+31515119i
x=3151+31515119ix=6302−215119×i
Simplify the expression
More Steps

Evaluate
x=6302−215119×i
Divide the terms
More Steps

Evaluate
6302−215119×i
Rewrite the expression
6302(1−15119×i)
Cancel out the common factor 2
3151−15119×i
Simplify
3151−31515119i
x=3151−31515119i
x=3151+31515119ix=3151−31515119i
Solution
x1=3151−31515119i,x2=3151+31515119i
Alternative Form
x1≈0.00˙31746˙−0.390347i,x2≈0.00˙31746˙+0.390347i
Show Solution
