Question
Solve the system of equations
(x1,y1)=(−21+85,31−85)(x2,y2)=(2−1+85,31+85)
Evaluate
{2x−3y=−2xy=14
Solve the equation for x
More Steps

Evaluate
2x−3y=−2
Move the expression to the right-hand side and change its sign
2x=−2+3y
Divide both sides
22x=2−2+3y
Divide the numbers
x=2−2+3y
{x=2−2+3yxy=14
Substitute the given value of x into the equation xy=14
2−2+3y×y=14
Simplify
More Steps

Evaluate
2−2+3y×y
Multiply the terms
2(−2+3y)y
Multiply the terms
2y(−2+3y)
2y(−2+3y)=14
Cross multiply
y(−2+3y)=2×14
Simplify the equation
y(−2+3y)=28
Expand the expression
More Steps

Evaluate
y(−2+3y)
Apply the distributive property
y(−2)+y×3y
Use the commutative property to reorder the terms
−2y+y×3y
Multiply the terms
More Steps

Evaluate
y×3y
Use the commutative property to reorder the terms
3y×y
Multiply the terms
3y2
−2y+3y2
−2y+3y2=28
Move the expression to the left side
−2y+3y2−28=0
Rewrite in standard form
3y2−2y−28=0
Substitute a=3,b=−2 and c=−28 into the quadratic formula y=2a−b±b2−4ac
y=2×32±(−2)2−4×3(−28)
Simplify the expression
y=62±(−2)2−4×3(−28)
Simplify the expression
More Steps

Evaluate
(−2)2−4×3(−28)
Multiply
More Steps

Multiply the terms
4×3(−28)
Rewrite the expression
−4×3×28
Multiply the terms
−336
(−2)2−(−336)
Rewrite the expression
22−(−336)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+336
Evaluate the power
4+336
Add the numbers
340
y=62±340
Simplify the radical expression
More Steps

Evaluate
340
Write the expression as a product where the root of one of the factors can be evaluated
4×85
Write the number in exponential form with the base of 2
22×85
The root of a product is equal to the product of the roots of each factor
22×85
Reduce the index of the radical and exponent with 2
285
y=62±285
Separate the equation into 2 possible cases
y=62+285y=62−285
Simplify the expression
More Steps

Evaluate
y=62+285
Divide the terms
More Steps

Evaluate
62+285
Rewrite the expression
62(1+85)
Cancel out the common factor 2
31+85
y=31+85
y=31+85y=62−285
Simplify the expression
More Steps

Evaluate
y=62−285
Divide the terms
More Steps

Evaluate
62−285
Rewrite the expression
62(1−85)
Cancel out the common factor 2
31−85
y=31−85
y=31+85y=31−85
Evaluate the logic
y=31+85∪y=31−85
Rearrange the terms
{x=2−2+3yy=31+85∪{x=2−2+3yy=31−85
Calculate
More Steps

Evaluate
{x=2−2+3yy=31+85
Substitute the given value of y into the equation x=2−2+3y
x=2−2+3×31+85
Calculate
x=2−1+85
Calculate
{x=2−1+85y=31+85
{x=2−1+85y=31+85∪{x=2−2+3yy=31−85
Calculate
More Steps

Evaluate
{x=2−2+3yy=31−85
Substitute the given value of y into the equation x=2−2+3y
x=2−2+3×31−85
Calculate
x=−21+85
Calculate
{x=−21+85y=31−85
{x=2−1+85y=31+85∪{x=−21+85y=31−85
Calculate
{x=−21+85y=31−85∪{x=2−1+85y=31+85
Check the solution
More Steps

Check the solution
{2(−21+85)−3×31−85=−2−21+85×31−85=14
Simplify
{−2=−214=14
Evaluate
true
{x=−21+85y=31−85∪{x=2−1+85y=31+85
Check the solution
More Steps

Check the solution
{2×2−1+85−3×31+85=−22−1+85×31+85=14
Simplify
{−2=−214=14
Evaluate
true
{x=−21+85y=31−85∪{x=2−1+85y=31+85
Solution
(x1,y1)=(−21+85,31−85)(x2,y2)=(2−1+85,31+85)
Show Solution
